
14 Asian Fisheries Science 34 (2021):14–22 

 

 

The Relationship Between Size at 
Maturity and Maximum Size in 
Cichlid Populations Corroborates 
the Gill-Oxygen Limitation Theory 
(GOLT) 

 
©Asian Fisheries Society 
ISSN: 0116-6514 
E-ISSN: 2073-3720 
https://doi.org/10.33997/j.afs.2021.34.1.002 

 

UPALI S. AMARASINGHE1,*, DANIEL PAULY2  
1Department of Zoology and Environmental Management, University of Kelaniya, Kelaniya 11600, Sri Lanka  
2Sea Around Us, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada 

  

*E-mail: zoousa@kln.ac.lk   | Received: 20/12/2020; Accepted: 28/02/2021   

 
 

Abstract 
 

Fish generally mature at a smaller fraction of their maximum sizes than birds and mammals. The farmed tilapia 
(Family Cichlidae) can tolerate adverse conditions that result in stunting and which also cause the fish to spawn at 
small size. Such spawning at small size (or ‘early spawning’) is usually perceived as a unique feature of tilapia. The 
mechanism that explains how stressful environmental conditions tend to reduce the maximum size that fish can 
reach is very general and should apply to all fish. However, not all fish species are equally hardy, and most fish do not 
survive in the stunted or dwarf form under stressful environmental conditions. Tilapia, and other cichlids, on the other 
hand, can handle stressful conditions, if by remaining stunted. The present study shows that tilapia and other cichlids 
do not spawn ‘earlier’ than other teleosts. Rather, they are exceptionally tolerant of stressful environmental 
conditions, but with elevated metabolism. By reducing their growth and the maximum size they can reach ‘stunting’, 
they also reduce the sizes at which their maturity is initiated (‘early spawning’). This corroborates the gill-oxygen 
limitation theory (GOLT), which identifies spawning as an event rather than a determinant of fish growth. 
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Introduction 
 
Relative to mammal and birds, fish achieve first 
maturity at a smaller fraction of the maximum size 
they are capable of reaching, particularly when growth 
in weight is concerned (Pauly, 2021). Among many of 
the ichthyologists working on the family Cichlidae, 
which include tilapia of genus Oreochromis as 
important farmed species, this ‘early maturation’ has 
often been interpreted as a taxon-specific phenotypic 
response to unstable environmental conditions. 
Numerous explanations have been proposed for this 
perceived unique feature, involving r vs. K-selection 
(Pianka, 1970), or precocial-altricial dichotomy (Noakes 
and Balon, 1982), which evokes a continuum from 
‘capital breeding’, a situation in which reproduction is 
performed by stored energy, to ‘income breeding’, 
where concurrent energy is used for reproduction 
(Stephens et al., 2009; McBride et al., 2015).  
 
Iles (1973) attempted to attribute the ‘early maturity’ 
phenomenon that many aquaculturists complain about 

as a unique “resource limitation due to overcrowding”. 
Specifically, he argued that in tilapia populations, 
maturation at an earlier age and increased relative 
fecundity enable fish to withstand high mortality rates 
under adverse environmental conditions. Jointly, 
these hypotheses presented ‘early maturity’ as a 
problem specific to cichlids, particularly to tilapia of 
the genus Oreochromis, e.g., Nile tilapia (Oreochromis 
niloticus (Linnaeus, 1758)), which is very important in 
tropical and semitropical aquaculture. 
 
Another issue is that these hypotheses were 
embedded in another, higher-level but largely 
unexamined hypothesis. Thus, among ichthyologists, 
the process of transition from immature stage to 
maturity is generally perceived as a “reproductive 
drain” in that fish, once they reach sexual maturity, 
exhibit slower growth because the energy previously 
available for growth is switched to gonadal 
development (Charnov, 2008; Quince et al., 2008). 
 
Pauly (1984) showed that the ratio of oxygen supply at 
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maturity (Qm) to that at the maximum size (Qmax)*, i.e., 
the ratio Qm/Qmax is similar in a wide range of fish 
species. On the other hand, the ratio of mean length at 
first maturity (Lm) to maximum length (Lmax) or 
asymptotic length, (L, which is equivalent) declines 
with sizes (Froese and Binohlan, 2000; Pauly, 2021), 
which is incompatible with being what Charnov (2008) 
called a “Beverton and Holt invariant”. 
 
Also, most conventional accounts of the hormonal 
cascade that leads to maturation and spawning in 
teleosts are presumed to start with “environmental 
input” or stimuli that supposedly trigger reproduction 
(see, e.g., Figure 8.1 in Pankhurst, 2016). Such 
accounts, however, fail to consider that the juveniles 
of long-lived species can pass through several 
spawning seasons without perceiving the 
environmental input or stimuli that supposedly trigger 
reproductive activity.  
 
What is missing from such accounts is a factor 
generating an individual’s internal readiness to 
perceive these environmental input or stimuli the 
same way that adult fish do. This internal readiness, as 
hypothesised by Pauly (1984) is provided by the ratio of 
their metabolic rate (Q) relative to their routine 
metabolism (i.e., Q/Qmaint), which declines as the weight 
of individuals grows faster than the surface area of 
their gills (see, e.g., De Jager and Dekker, 1975). The 
triggering value was shown to be Qm/Qmaint  ≈ 1.36 (Pauly, 
1984), with 95 % confidence interval (C.I) ranging from 
1.22 to 1.53 estimated with the method of Fieller  (1940; 
www.graphpad.com/quickcalcs/ErrorProp1.cfm). 
 
This hypothesis was elaborated upon in Pauly (2019a, 
b, 2021) and it is now a key element of his gill-oxygen 
limitation theory (GOLT). Besides supportive evidence 
presented by various authors, e.g., Thorpe (1990), 
Thorpe et al. (1998) and Lowe-McConnell (2000), three 
explicit tests of this aspect of the GOLT have been 
performed so far: 
 

(1) Kolding et al. (2008) concluded from laboratory 
experiments that the low oxygen condition 
reduced the growth and size at first maturity of 
Nile tilapia as predicted by the GOLT; 
 

(2)  Diaz-Pauli et al. (2017) reported similar results 
for similar experiments with guppies Poecilia 
reticulata Peters, 1859; 
 

(3) Meyer and Schill (2021) showed that in 51 stream-
dwelling population of 3 species of salmonids, 
the ratio Lmax

D vs. Lm
D (equivalent to the ratio 

Q/Qmaint), was 1.35, almost exactly the same as 
obtained by Pauly (1984).  

 
There are still objections to the GOLT, however, 
notably by Lefevre et al. (2017a, b); they are dealt with 
in Pauly and Cheung (2017, 2018), and particularly in 
Pauly (2021). 
 

Here, the generality of the GOLT is tested by asking 
whether first maturation in tilapia occurs ‘earlier’ than 
in other teleosts, as is commonly stated. This 
opportunity is also used to assess whether different 
approaches for estimating the parameter D affect the 
ratio Lmax

D / Lm
D in a more than negligible way. 

 
Materials and Methods 
 
The maximum length (Lmax; total length, in cm), mean 
length at first maturity (Lm; total length, in cm) and the 
parameters a and b of length-weight relationship 
(LWR) of the form W = a·Lb for 41 in the females of 
natural or feral cichlid populations from different 
geographical regions were obtained from the 
published literature. In some populations of 
Oreochromis mossambicus (Peters, 1852) and O. 
niloticus, data were available only for both sexes 
combined. Nevertheless, in Oreochromis species, the 
adult males exhibit territorial behaviour and defend 
reproductive arenas in the littoral zones of lakes and 
reservoirs. Hence, catch samples in the fisheries of 
Oreochromis species were assumed to be dominated 
by females because fishing operations are generally 
performed in limnetic zones of lakes and reservoirs. 
Accordingly, the maximum lengths in sexually 
unassigned catch samples were assumed to be 
estimates of female Lmax. 
 
In the present analysis, only estimates of Lmax were 
considered that could be linked (preferably in the 
same contribution) to the estimates of Lm, while the 
latter had to explicitly refer to the length at which 50 
% of the females were found to be mature. 
 
Growth, in fish, is generally assumed to conform to 
concepts developed by von Bertalanffy (1938, 1949, 
1951), who built on earlier work by Pütter (1920). Their 
key feature is that growth rate (dw/dt) can be seen as 
the difference between two processes, i.e., 
 
dw/dt = Hwd – kw         (1)
       
where the two terms on the right are usually called 
anabolism and catabolism, respectively, and where d 
<1. That is, an increase of body mass (dw/dt) is the 
difference between body mass (i.e., protein 
molecules) that is (are) newly (Hwd) synthesised and 
body mass (kw) that becomes degraded (i.e., proteins 
that are denatured; Pauly 2019b). As mentioned by 
Pauly (2021), in “water-breathing ectotherms” such as 
fishes and aquatic invertebrates, the parameter d in 
Eq. 1 is equivalent to the exponent (dG) of the 
relationship between respiratory (gill) surface area (G) 
and body weight (W) of the form G = aWdG, which 
indicates the process of anabolism requiring oxygen 
through respiratory (gill) surface of fish. 
 
Integrating the differential equation in (1) when d is set 
equal to 2/3 yields the von Bertalanffy Growth 
Function (VBGF), which for length has the form: 
 

*The term Qmax is replaced by Qmaint further in the text; note that  
Qmax = Qmaint 

http://www.graphpad.com/quickcalcs/ErrorProp1.cfm
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𝐿𝑡 = 𝐿∞(1− 𝑒−𝐾(𝑡−𝑡0))        (2)
       
where Lt is the mean length, e.g., total length (TL), as 
used here, L∞ is the asymptotic length, i.e., the mean 
length they would attain after an infinitely long life, K a 
growth coefficient (time-1) and to is the (usually 
negative) age they would have at L = 0 if they had 
always grown as predicted by the VBGF, and which 
can here be neglected. 
 
Equation (2) assumes that growth stops (at L∞) when 
Hwd = kw, which is unavoidable because d, the scaling 
factor between the surface area of the gills (and 
hence of oxygen supply to the body) and body weight 
is < 1, and thus cannot keep up as weight (and hence 
oxygen demand) increases. When d ≠ 2/3, but still <1, 
the integration of equation (1) yields a general form of 
the VBGF; for length, this is: 
 
Lt = L∞(1-e-KD(t-t

0
))1/D          (3)

       
where D = b(1-d) and b is the exponent of an LWR. 
 
The definition of D allows different approaches for its 
estimation. Thus, D can be seen as variable because 
population-specific estimates of b are available (see 
Table 1); these values can be combined with an 
estimate of d = 0.8, which appears to be a suitable 
mean value for cichlids in general (Fernandes and 
Rantin, 1986; Kisia and Hughes, 1992; van Dam and 
Pauly, 1995). Alternatively, estimates of d can be 
obtained by using the equation: 
 
d = 0.674+0.0357·log (Wmax)            (4)  
 
with Wmax in g is the weight corresponding to Lmax 
(Pauly, 1981, 2019a), and which can be used if different 
values of d can be assumed to apply to different 
species and populations of cichlids. 
 
Thus, D1 = b·(1 - 0.8) and D2 = b·(1 - d) are defined, and 
the results are compared with those of Pauly (1984), 
who used the definition D3 = 3·(1 - d). This is also based 
on equation (4), but b is assumed constant, i.e., b = 3, 
which is the average value b takes in the 
overwhelming majority of fish (Froese, 2006; see also 
www.fishbase.org). 
 
Results 
 
The best documented cichlid species considered here 
is the Nile tilapia (O. niloticus), an extremely important 
farmed species (Pullin et al., 1996), represented by 12 
native (N) or feral/introduced (F) populations in Brazil 
(F); Ethiopia (N); Kenya (N); Uganda (N) and Sri Lanka 
(F). Next were the redbelly tilapia (Coptodon zillii 
(Gervais, 1848)) with 14 populations from Egypt (N); 
Nigeria (N) and Uganda (N), and Mozambique tilapia, 
formerly distributed widely for farming (Pullin et al., 
1997), with 12 populations in Australia (F), Hong Kong 

(F) and Sri Lanka (F). Additional species were the 
redbelly tilapia (C. zillii) with 13 introduced population 
in small Uganda volcanic crater lakes (F), blackchin 
tilapia (Sarotherodon melanotheron Rüppell, 1852), a 
species occurring in West African mixohaline lagoons 
(Pauly, 1976, 2002), a populations in Ghana (N), one 
jewelfish (Hemichromis bimaculatus Gill, 1862) 
population from Algeria (N) and one each of Agassiz’s 
dwarf cichlid (Apistogramma agassizii (Steindachner, 
1875)) and banded dwarf cichlid (Apistogramma 
bitaeniata Pellegrin, 1936), both native in the Amazon 
Basin. 
 
Thus, Lm and Lmax data pairs were identified for the 
females of 41 natural or feral populations in 7 species 
of cichlids, ranging in total length from 4.2 cm in A. 
agassizii in Aningal Lake, Amazon Basin, to 55 cm in O. 
niloticus in Lake Victoria, Uganda (Table 1). 
 
Table 2 summarised the data in Table 1 in the form of 
the mean ratio Lmax

D/Lm
D for O. niloticus, O. 

mossambicus, C. zillii and for all cichlids (see also Fig. 
1).  
 
These ratios, whether based on D1 or D2 are all close 
to the ratio of 1.36 estimated by Pauly (1984), who 
applied D3 to several marine fishes (Table 2). 
 
Discussion 
 
The results of the present study suggest that cichlids, 
including species of Oreochromis do not spawn as 
‘smaller sizes’ than other species of marine fishes, as 
can be inferred from their mean Lmax

D/Lm
D ratio of 1.35 

or 1.40 (depending on D1 or D2, see Table 2), which is 
essentially the same as obtained by Pauly (1984) for 
marine teleosts (1.36) and by Meyer and Schill (2021) 
for freshwater salmonids (1.35). 
 
The impression that cichlids, especially farmed 
species, possess a unique mechanism to respond to 
stressful conditions - spawning ‘early’ – is erroneous, 
and caused by the hardiness of these species,  
especially regarding their tolerance of high 
temperatures and hypoxia (Burggren et al., 2019). 
 
The mechanism that explains how stressful 
environmental conditions (e.g., elevated 
temperatures or hypoxia) tend to reduce the 
maximum size that fish can reach is very general and 
should apply to all fish (Pauly, 2019a, 2021). However, 
not all fish species are equally hardy, and rather than 
surviving in stunted form when environmental 
conditions are stressful, most fish die. Thus, their 
stunted or ‘dwarf form’ do not exist and neither do 
they spawn at small sizes. Whereas tilapia, and other 
cichlids, can handle stressful conditions if by 
remaining stunted. Given the constancy of the 
Lmax

D/Lm
D ratio (~ 1.35), this mean that stunted tilapia 

and other cichlids can spawn at very small size. It is 

http://www.fishbase.org/
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Table 1. Maximum length (Lmax; total length in cm), length of first maturity (Lm; total length in com), multiplicative term (a) and 
exponent (b) of length-weight relationship and sampling localities (and references) of the females of 41 cichlid populations. For 
definition of D1, see text. 
 

No. Species Lmax  Lm  a b D1 Locality (References) 

1 
Oreochromis 
niloticus 
(Linnaeus, 1758) 

47 21 0.0295 2.494 0.499 
Minneriya, Sri Lanka (Amarasinghe, 1990; Amarasinghe 
and De Silva, 1992; Amarasinghe et al., 2017) 

2 O. niloticus 34 22.6 0.0940 2.203 0.441 Victoria, Sri Lanka (Amarasinghe et al., 2017) 

3 O. niloticus 39 22.5 0.0385 2.837 0.567 
Kaudulla, Sri Lanka (Amarasinghe, 1990; Amarasinghe 
and De Silva, 1992) 

4 O. niloticus 55 31 0.015 3.140 0.628 
Lake Victoria 1998-99 (Njiru et al., 2006; Njiru et al., 
2008) 

5 O. niloticus 49 26 0.019 3.010 0.602 
Lake Victoria 2014-15 (Yongo and Outa, 2016; Yongo et 
al., 2018) 

6 O. niloticus 40 24.6 0.0256 2.500 0.500 Lake Koka, Ethiopia (Tesfaye et al., 2016) 

7 O. niloticus 40 28 0.0820 3.011 0.602 Lake Naiwasha 2017, Kenya (Waithaka et al., 2020) 

8 O. niloticus 40 28 0.0310 2.860 0.572 Lake Naiwasha, Kenya (Waithaka et al., 2020) 

9 O. niloticus 39 23.4 0.0366 2.884 0.577 
Barra Bonita Reservoir, SE Brazil (Novaes and Carvalho, 
2012) 

10 O. niloticus 55 24.5 0.0240 2.960 0.592 Lake Victoria, Uganda (Balirwa, 1994, figures 1 & 2) 

11 O. niloticus 52 25.3 0.0230 3.010 0.602 Lake Kyoga, Uganda (Balirwa, 1994, figures 1 & 2) 

12 O. niloticus 36 27.5 0.0190 3.117 0.623 Lake Wamala, Uganda (Bwanika et al., 2007) 

13 
Oreochromis 
mossambicus 
(Peters, 1852) 

33.5 15.5 0.032 2.792 0.558 Tabbowa, Sri Lanka (Amarasinghe, 1988, 2002) 

14 O. mossambicus 36 20.5 0.090 2.498 0.500 
Pimburettewa, Sri Lanka (De Silva 1985, 1986; 
Amarasinghe, 1987). 

15 O. mossambicus 37 17 0.028 2.841 0.568 
Parakrama Samudra, Sri Lanka (Amarasinghe, 1988; 
Amarasinghe et al., 1989); Lmax ≈ mean of 3 basins.  

16 O. mossambicus 39 21 0.0577 2.576 0.515 
Kaudulla, Sri Lanka (De Silva, 1985, 1986; Amarasinghe, 
1990; Amarasinghe and De Silva, 1992) 

17 O. mossambicus 38 19.5 0.0497 2.863 0.573 
Minneriya, Sri Lanka (De Silva, 1985, 1986; Amarasinghe, 
1990; Amarasinghe and De Silva, 1992) 

18 O. mossambicus 32 19 0.031 2.845 0.569 
Udawalawe, Sri Lanka (De Silva, 1985, 1986; Athukorala 
and Amarasinghe, 2010) 

19 O. mossambicus 28 17 0.061 2.642 0.528 
Chandrikawewa, Sri Lanka (De Silva, 1985, 1986; 
Athukorala and Amarasinghe, 2010) 

20 O. mossambicus 30.5 19.2 0.0179 2.999 0.600 Victoria, Sri Lanka (Amarasinghe et al., 2017) 

21 O. mossambicus 18.5 13 0.062 2.574 0.515 
Tissa wewa, Sri Lanka (De Silva, 1985, 1986; Pet et al., 
1996) 
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Table 1. Continued. 
 

No. Species Lmax  Lm  a b D1 Locality (References) 

22 O. mossambicus 31 20.2 0.0303 3.056 0.611 
Plover Cove Reservoir, Hong Kong (Hodgkiss and Man, 
1977) 

23 O. mossambicus 30 21.8 0.0011 2.390 0.478 North Pine Dam, Brisbane (Arthington and Milton, 1986) 

24 O. mossambicus 30 21.8 0.0463 2.941 0.588 
North Pine Dam, Brisbane (Arthington and Milton, 1986; 
Blühdorn and Arthington, 1990) 

25 
Coptodon zillii 
(Gervais, 1848) 

16 8.5 0.0207 2.900 0.580 Egypt (Mahomoud et al., 2011) 

26 C. zilli 19.7 15.5 0.0135 2.800 0.560 
Lake Kanyango, Uganda (Efitare, 2007; Efitare et al., 
2009) 

27 C. zilli 23.5 15.9 0.0468 2.800 0.560 
Lake Lugembe, Uganda (Efitare, 2007; Efitare et al., 
2009) 

28 C. zilli 24.3 14 0.0219 3.000 0.600 
Lake Kifuruka, Uganda (Efitare, 2007; Efitare et al., 
2009) 

29 C. zilli 21.1 14 0.0191 3.000 0.600 
Lake Lyantond, Uganda (Efitare, 2007; Efitare et al., 
2009) 

30 C. zilli 23.4 14 0.0158 3.000 0.600 
Lake Wandakara, Uganda (Efitare, 2007; Efitare et al., 
2009) 

31 C. zilli 23.3 14 0.0102 3.100 0.620 
Lake Mwegenywa, Uganda (Efitare, 2007; Efitare et al., 
2009) 

32 C. zilli 28.7 16.2 0.0166 3.000 0.600 
Lake Rukwanzi, Uganda (Efitare, 2007; Efitare et al., 
2009) 

33 C. zilli 23 13.5 0.0105 3.100 0.620 
Lake Nyinabulitwa, Uganda (Efitare, 2007; Efitare et al., 
2009) 

34 C. zilli 27 14 0.0468 2.800 0.560 
Lake Nyanswiga, Uganda (Efitare, 2007; Efitare et al., 
2009) 

35 C. zilli 17.6 13.7 0.0195 3.000 0.600 
Lake Nkuruba, Uganda (Efitare, 2007; Efitare et al., 
2009) 

36 C. zilli 20.4 13 0.0105 3.000 0.600 
Lake Kasenda, Uganda (Efitare, 2007; Efitare et al., 
2009) 

37 C. zilli 22.2 13.8 0.0105 3.100 0.620 Lake Ntanda, Uganda (Efitare, 2007; Efitare et al., 2009) 

38 
Sarotherodon 
melanotheron 
Rüppell, 1852 

22 14.2 0.0540 2.808 0.562 Brimsu Reservoir, Ghana (Mireku et al., 2016) 

39 
Hemichromis 
bimaculatus Gill, 
1862 

10.2 5.7 0.0276 2.800 0.560 Algeria (Guezi et al., 2015) 

40 

Apistogramma 
agassizii 
(Steindachner, 
1875) (a) 

4.16 2.51 0.0206 3.000 0.600 Aningal Lake, Amazon (de Oliveira and de Queiroz, 2017) 

41 
Apistogramma 
bitaeniata 
Pellegrin, 1936 (a) 

4.38 2.53 0.0209 3.000 0.600 Aningal Lake, Amazon (de Oliveira and de Queiroz, 2017) 

(a)The total lengths for the two Apistogramma species were obtained by multiplying their standard lengths by 1.26; their LWRs 
were derived using the method of Hay et al. (2020) from length-weight pairs in table 1 of de Oliveira and de Queiroz (2017), due to 
their LWRs being questionable. 
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Table 2. Lmax
D vs Lm

D ratios and their 95 % confidence intervals (C.I.) female fish of the family Cichlidae, based on data in Table 1 
and the method of Fieller (1940); see footnote for the methods used to estimate D. SD = standard deviation. 
 

No. Taxon (N)  D* 
Mean 
Lmax

D 
SD 

Mean 
Lm

D 
SD Lmax

D/Lm
D Low C.I. 

High 
C.I. 

1 Six cichlid spp. 
(n = 41) 

D1 6.90 2.08 5.12 1.43 1.35 1.18 1.53 

2 D2 9.08 1.79 6.48 1.42 1.40 1.28 1.54 

3 Oreochromis niloticus 
(Linnaeus, 1758) (n = 12) 

D1 8.77 2.16 6.41 1.39 1.37 1.12 1.66 

4 D2 9.76 1.41 7.06 1.03 1.38 1.22 1.56 

5 Oreochromis 
mossambicus (Peters, 
1852) (n = 12) 

D1 6.78 1.20 5.05 0.78 1.34 1.16 1.54 

6 D2 9.04 1.43 6.52 1.22 1.39 1.20 1.61 

7 Coptodon zillii (Gervais, 
1848) 
(n = 13) 

D1 6.32 0.74 4.76 0.46 1.33 1.22 1.45 

8 D2 9.59 1.04 6.79 0.78 1.41 1.29 1.55 

9 
Thirty-four spp. (n = 56) of 
marine fishes in Pauly 
(1984, 2021) 

D3 9.81 2.91 7.21 2.30 1.36 1.22 1.53 

*D1 = b·(1-0.8); D2 = b·(1-d) and D3 = 3·(1-d), with d used in D2 and D3 estimated from the equation d = 0.674+0.0357·log(Wmax), with 
Wmax in g is the weight corresponding to Lmax (see text). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Relationship between Lmax

D and Lm
D in the females of 7 species and 41 cichlid populations (solid line). Blue dots = O. 

mossambicus (n = 12); red squares = O. niloticus (n = 12); green triangles = C. zillii (n = 13) and brown diamonds = 4 other species (n 
= 4). The dotted lines indicate the 95 %confidence interval. 
 

 
their hardiness that matters here, not a hypothetical 
tendency toward early spawning. 
 
However, while it is well established that stressful 
environmental condition (as e.g., occur in small 
freshwater reservoirs compared with larger ones) 
reduce both the maximal size that cichlid fish can 
reach (Lowe-McConnell, 1982, 2000; Eyeson, 1983; 
Lorenzen, 2000) and their size at first maturity (De 

Silva, 1986; Duponchelle and Panfili, 1998; Lorenzen, 
2000), the causes of relative constancy of the Lm/Lmax 
ratio (or its inverse) was rarely studied in tilapia.  
 
Indeed, many articles purporting to study length at 
first maturity in tilapia fail to report on the maximum 
individual sizes reached by the populations in 
question (see e.g., Duponchelle and Panfili, 1998). 
Other articles report on age at first maturity (tm), 
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although no theory that appears to exist would explain 
how (i) individual fish would keep track of their age and 
(ii) how a certain age being reached would trigger 
maturation and spawning. 
 
In contrast, individual fish can monitor their current 
metabolic rate (Q) relative to their maintenance rate 
(Qmaint) (rather like we human can tell that we are out of 
breath). As they grow, their metabolic rate declines 
because their gill surface area does not keep up with 
their weight. When their relative metabolic rate 
declines and approaches 1.35, this triggers the 
hormonal cascade leading to maturation and 
spawning, with the latter requiring a mate (Pauly, 
1984, 2019a, 2021). Thus, metabolic rate determines 
both size and first maturity and maximum size, the 
latter of which occurs when Hwd = kw (see above). This 
is why Lm and Lmax must be studied together. 
 
There is supporting experimental evidence for the 
GOLT from Nile tilapia (Kolding et al., 2008) and 
guppies (Diaz-Pauli et al., 2017), along with 
comparative studies based on analytical stream-
dwelling salmonid populations (Meyer and Schill, 
2021). Its critiques, notably by Lefevre et al. (2017a, b), 
are refuted in Pauly (2021). The present analysis was 
based on maximum lengths (Lmax), mean lengths at 
first maturity (Lm) and the parameters a and b of 
length-weight relationship of 41 females of natural or 
feral cichlid population in Africa, Asia and South 
America. The results indicate that cichlids, including 
species of Oreochromis do not spawn at ‘smaller sizes’ 
than other species of teleosts, as can be inferred 
from their mean Lmax

D/Lm
D ratio of 1.35 to 1.40 (see 

above for definition of D), which is essentially the 
same as the estimates obtained by Pauly (1984) for 
marine teleosts (1.36) and by Meyer and Schill (2021) 
for freshwater salmonids (1.35). Hence, our analysis 
corroborates the GOLT and explains the hitherto 
poorly understood phenomenon of ‘stunting’ or 
‘dwarfing’ in the family Cichlidae. 
 
Conclusion 
 
The conventional view of ‘stunting’ or ‘dwarfing’ in 
tilapias was assumed to occur when the fish are in 
unstable or stressful environments, and they utilise 
unique adaptive mechanisms to mature early in their 
life. Thus, because of the “reproductive drain” caused 
by the transfer of energy from growth to 
reproduction, their growth is affected, and they 
remain small. Pauly (1984, 2019a, b, 2021) presented 
evidence showing that this view is erroneous, and that 
it inverts the cause. In fact, when conditions are 
stressful, growth (including juvenile growth) declines, 
which induces maturation and spawning. The 
environment with elevated temperatures, or lower 
oxygen, or crowding stress fish, which manifest itself 
in higher oxygen requirements. However, as fish grow, 
their oxygen supply (Q) declines because the surface 
area of their gills does not keep up with their 
increasing weight (Pauly 1984, 2019b, 2021); thus, 

stress impacts growth. With a fixed Qm/Qmaint ratio 
(corresponding to Lmax

D/Lm
D), tilapia, under stressful 

conditions, can adjust the size at first maturity 
downward like any other fish, i.e., without any ‘cichlid-
specific early-spawning’ mechanism. 
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