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Abstract

Simulations of a mark-recapture experiment are used to demonstrate the bias
associated with use of a widely accepted equation for estimating growth rates from data
where absolute age is unknown. The bias results in an overestimation of K, the growth
rate constant, and an underestimation of Lw, the thearetical maximum size. The bias
appears to be associated with a failure to account for the redistribution of the error
term when the basic growth equation is transformed to eliminate the necessity of

estimating age.



Introduction

It is standard procedure in estimating the growth rate of wild
populations to capture a portion of the stock, measure their lengths,
mark and release them, and then remeasure their lengths upon
recapture at some future time. Among the problems associated with
the procedure are those of determining size at age and of analyzing
data for animals at large for widely varying times. Normally the
animals are assumed to have von Bertalanffy growth kinetics and are
fitted by the linear transformations of Walford (1946) or Chapman
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(1961) or the nonlinear procedure of Fabens (1965). All these
procedures avoid the necessity of determining age and Fabens’
procedure has the additional advantage of allowing the direct fitting
of data on animals at large for differing times. These transformations,
however, alter the assumptions concerning the distribution of the
error.,

In this article we will demonstrate the bias associated with the
most versatile of these transformations, the Fabens' equation, The

results are also applicable to the procedures of Walford and Chapman
as these are special cases where the time at large is constant or
treated as a constant.

Fabens’ Derivation
The von Bertalanffy growth equation is of the form:
Lt = Loo (1-exp (-K(t-ty))) ..1)

where Lt is the length at time t, Lo is the theoretical maximum
length, to is the theoretical age at which the animal would have zero
length if it always followed von Bertalanffy kinetics, and K is the
growth rate constant. Let the age at marking and at recapture be m
and r, respectively, and the time the organism is at large be dt: ty =
tm + dt. The length at marking is:

Lm = Lo (1-exp (-K(ty-ty)) w2)
which can be rearranged as
exp (-K(tm-to)) = (Loo-Lyn) - Lool ...3)

Similarly defining the length at recapture and substituting into
equation (3) we obtain

Lr = Loo (1-exp (-K(ty-to))
= Loo (l'eXP ('K(tm'to)) * exp ('K’dt)
= Loo (1-((Loo-Lyp)-Leo-1) - exp (-K - dt))
= Lo + (Lyp-Looyexp (-K-dt) )

(Fabens 1965). The growth parameters K and Le can be solved by
nonlinear regression with Ly, Lm and dt. For the special case where
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dt is a constant (i.e., all organisms are at large for the same time
period), then a linear regression of Ly + dt against Ly will generate
a slope of exp (-K.dt) and intercept of Lo (l-exp(-K:dt)) (Walford
1946).

We assumed a von Bertalanffy equation of the form

Lt = 100 - (1-exp (-0.1 - £))

where to = 0. To create each data set, we randomly chose 200 ages
between t = 0 and t = 30 (the latter being the age where 95% of Leo
was attained) and solved for the expected length. In all, we generated
40 data sets by replicating the process ten times at each of four
different standard deviations: 2.5, 5.0, 7.5 and 10.0. Each data set
had a unique distribution of age and variation in size-at-age. To form
the final data sets, we randomly paired the 200 observations into 100
‘mark-recapture’ pairs, assigning the smaller age of the pair to that at
marking, and the larger to age at recapture.

Because the simulation resulted in a set of randomly chosen ages
characterized by lengths with randomly chosen deviations, the
equation of best fit for each data set was expected to be slightly
different from that of the original ‘population’. We derived an
estimate of the equation of hest fit for each data set by nonlinear
regression of the randomly chosen lengths against their ages. We
used this direct fit (DF) of the von Bertalanffy equation as a standard
against which we measured the bias associated with Fabens’ equation
(FB). We fitted both types of equations with the Marquardt procedure
available in SAS NLIN (Statistical Analysis Systems 1983).

Comparison of Growth Curves

To facilitate discussion we designate the estimates of K, Lo and
SD derived from directly fitting von Bertalanffy’s curve (DF) as K,
L'« and SE’, and those derived with the Fabens’ procedure (FB) K",
L's and SE". The age at which maximum difference in length occurs
between the average growth curves (tmax) derived with FB and DF
methods was derived as follows.

The difference in predicted length (L't, L"t) at time t of the two
growth curves is

D=L"%-Lt
= L' (1-exp (-K"t)) - L' (1-exp (-K't)) .5)
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Taking the first derivative with respect to t,

dD/dt = L'« K- exp (-K't) - L",, K" exp (-K"t) ...6)
and setting dD/dt = 0 to solve for tmax, we have

L’ Kexp (-K'tmax) = L",, K" exp (-K"tmax)
L' K (L' K"1 = exp (K-K") tmax)
tmax = In (L'ee K (L" o K" 1)-(K-K")-1 )

For the case where K = K", tmax will be undefined. For all other
cases, tmax is derived from equation (7) and the maximum difference
between the growth curves is solved by substituting tmax for t in
equation (5).

Three major statistical analyses were performed:

o Z-tests conducted on the DF method to test differences
between K and 0.1, between L'» and 100, and between SE’s and SDs.

s F-tests (analysis of variances) to test for differences between
K and K', L'sc and L" ., and SE’ and SE".

¢ Linear regressions to test the relationships between the (SE"-
SD), (K"-0.1), and (100-L"e), and their respective SEs.

Results

Table 1 compares the estimates of Loo, K and SE derived from
DF and FB methods. SE"s were consistently greater than SE’s. For
80% of the trials, K's were greater than K'; whereas 80% of the Lo."s
were smaller than L'ws. The situation where L",, <L’', generally
corresponded to the case where K' > K with only two exceptions. L"
< L', generally corresponded to the case where K' > K with only two
exceptions,

Table 2 emphasizes the effect of growth variation (SD) on the
growth parameter estimates. The average K" increased from 0.1015
to 0.1222 directly with SD. Additionally the average difference of (K"
- K) and (K" - K)/K increased with SD. On the other hand, growth
variation had no effect on K.

The average L".. decreased as SD increased. (L".-L’,0) increased
directly with SD, as did the average relative difference, (L'ee-
L"oo)/L’. There was no obvious effect of SD on the estimates of L,
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Table 1. Standard errors and estimates of growth parameters K and L., estimated from
Fabens’ method (SE", K", L") and from direct fitting method (SE', K, L..) when
original length-age data generated with four standard deviations (2.5, 5.0, 7.5 and

10.0).
aD. ’ SE" =5 K K | A L'
25 3.0804 2.6785 010338 0.0884 29.208 100.483
28747 22811 0.0072 0.1011 100.248 92917
28109 2.3880 01018 0.1005 90.450 29.890
29467 2.4281 0.0066 0.0988 101.085 100.884
3.0017 2.7191 01008 0.0296 100.258 100.250
2.7820 24249 01002 0.1017 $8.762 99.896
28686 24190 01074 0.1012 98.752 99,808
28058 0.0082 0.098% 100.648 100.336
2.6825 24187 0.0992 01008 100.162 100.287
20652 2.3875 01012 0.0887 99.887 100.352
80 4.9612 4.6368 o11e2 01015 87.100 89.807
5.3708 48128 01128 01031 98.553 §8.825
5.7768 52861 01069 0.0882 99,668 100,531
5.4284 52207 01308 0.0004 96.8308 100.036
55709 47077 01201 01012 25,672 989.569
54678 4.9687 01064 0.1032 58.788 $9.068
5.2443 48772 01042 0.0977 99.208 ~101.0660
54076 4.7922 01114 01004 98.427 99.950
5.9073 51048 0126 0.1034 85.498 99462
5.5070 471597 0.0629 0.0080 100.496 99.320
15 78742 7.5814 013282 01004 98.275 99998
7.7810 B8.8458 01068 0.0088 87.022 98,838
78545 89813 0.0887 01028 100,862 98,688
8.4122 7.2382 0.0029 0.1031 103.408 100116
85957 78844 01247 0.0068 95.478 100.328
7.9358 10268 01n2 01083 83.520 95.481
83734 7.4488 01170 0.1087 98.272 98.848
8.6200 7.8720 01208 01087 968.540 29.608
81820 T.4820 01204 0.0879 95.910 100112
8.9070 74004 01102 0.0981 98,968 100.443
10,0 11.2083 10,8339 01280 0.0044 97.652 102929
10.8071 92448 0.133 0.0891 23.521 105878
1114894 9.1527 01418 0.0873 84.254 100.758
10.2763 8.3067 0.0987 0.100% 100.724 100.278
11.2707 10,5521 01418 0.0055 95.837 101.563
113178 98044 0.0080 00040 101.426 102.204
11.3584 9.8152 01026 0.0069 100.302 100.849
124088 11.3807 01348 0.0887 92.878 101177
10,0185 93268 0.1288 01062 95.858 99.360
11.77256 10.0858 01179 01114 93.728 84,237

Table 2. The effects of growth variations of four standard deviations on the growth
parameters K and L. and standard errors estimated from direct fitting method (K,
"oor SE"). The values are the average of ten

L'ec, SE" and from Faben's method (K",

replications.

Growth variations 2.5 5.0 75 10.0
X 0.1000 01007 0.1014 0.0985
K 0.1015 01123 01136 0.1220
KX 0.0015 00116 0.0121 0.0234
K KVE (%) 1.4848 11.5416 121141 24.3773
L' 1001303 99.7423 99.3360 100.9228
L 99.8439 97.7767 97.2252 971978
L'wLie 0.2864 -1.9638 21108 -3.7252
(L oo L VLo (%) 40,2866 -1.0675 21168 -3.8511
SE' 2.4414 48789 7.3542 9.9048
S5E" 28173 5.4681 8.2848 11.1393
SE'-SE" 0.3759 -0.5892 -0.8801 -1.2350
(SE-SE"VSE’ (%) -15.4482 -121632 -12.0148 -12.6120
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derived from the DF method. The average relative difference of (K-
K') increased from 1.48 to 24% with increasing SD, but the average
relative difference of (L'«-L") only increased from 0.29 to 3.65%.

Therefore, the growth variation (SD) had a higher bias-effect-on
estimates of K than on Le. The overall effect of the FB method (Fig.
1) is a growth equation which becomes more biased as the standard
deviation increases.

The average SE"s derived from FB method were greater,
whereas the average SE’s derived from DF method were smaller than
respective SDs. The difference of (SE"-SE’) increased with increasing
SD though the relative difference, (SE"-SE’)/SE’, did not demonstrate
a clear trend.

There was little difference between the average growth curves
obtained from the two methods when the standard deviation was low,
2.5 (Fig. 1a; Table 2). At SD = 2.5, the maximum length difference
MLD = L"tmax - L'tmax of two average growth curves was 0.37, and
the relative maximum difference (RMLD = MLD/L’tmax) was 0.68%
(Table 3), occurring at the age of 8.0 (26.7% of the maximum life
span, 30). The MLD and RMLD increased with increasing SD and
tmax decreased with increasing SD (Figs. 1a-1d; Table 3).

The Z-test (PROC UNIVARIATE NORMAL in SAS) indicated
that the distributions of all 80 sets of estimates of K and Loo were not
different from the normal distribution. The Z-tests showed that in the
DF method there were no significant differences between K and 0.1,
or between L' and 100, or between SE’ and SD. Since the residual
error distribution in the DF method was in the same format as that
in the generated data, and since the Marquardt nonlinear regression
technique provides an unbiased least square fit, the estimates were
expected to be unbiased.

Table 3. The effects of growth variations of four etandard deviations on the ages, tmax,
when maximal length differences occur. Tmax per cent is the fraction of the age to the
life apan. L"¢max and L'tmax are the lengths at tmax from growth curves estimated by
Fabens’ method and direct fitting method, respectively.

Growth variations 2.5 5.0 5 10.0
tmax 8.0162 7.6849 7.5518 7.5045
tmax (%)

tmax/life span (%) 26.7207 25.6163 251727 25.0150
Limax 55.2117 53.7387 53.1464 52,7323
L tmax 56.5881 68.5270 56.9961 68,2987
L"tmax - L'tmax 0.3774 2.7888 2.8497 5.5574

(L"tmax - UtmanYLtmax (%) 0.8835 5.1898 5.3820 10.5389
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Fig. 1. The average. growth curves derived from Fabens’ method (broken line) or direct
fitting method (solid line) with growth variation of (a) SD = 2.5, (b) SD = 5.0, {c) SD =
7.5,and (d) SD = 10.0.

The analysis of variance test showed that except when SD = 2.5,
K" and L"- were highly significantly (P < 0.01) or significantly (P <
0.05) different from K and L'c. SE"s were highly significantly
different from SEs in all four SDs in Table 1.

With the FB method, (SE"-SD), (0.1-K") and (L"-100) increased
as the SD increased. There was a significant relationship between
(0.1-K") versus SEs (Fig. 2) and between (L"-100) versus SEs (Fig. 3).
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0.1 to the standard error. K and standard error
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significant (P < 0.01).

L4
40f
a5k (100-Lep) = -02261 403206 - SE(RZ= 016340
-
L
3ot . e

! ! 1 i 4. I 1 1 n

L 1
o L 2 3 4 5 &€ T @ & 1 10 g2
Standard error

Fig. 3. The relationship of the deviation of 100 and
Lo, to the standard error. L, and standard error
were derived from Fabens’ method. ** = highly
significant (P < 0.01).
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In this study, we assumed Lt = It + e¢ ~ NID (0, 62), that is the
residual term g is additive and normally and independently
distributed with a mean of 0 and a constant variance of 62, When the
von Bertalanffy equation is directly fitted to length-age data, this
assumption is usually accepted since the curve is one of the class of
transcendental asymptotic functions (Turner et al. 1961) of the form
fix) = a+ b - exp (-X-C1) + & Based on its general acceptance and
simplicity we have employed this assumption and noted the bias
associated with estimates of growth parameters derived by using
Fabens’ procedure, We can now search for the causes for this bias and
provide possible remedies when using Fabens’ equation.
When the length at marking is error free, then

Lr = Loo+ (L - Loo) - exp (-Kdt) .8)

where T and Ly, are the true values of Ly and Ly, without variation.
Since Ly = Iy + &y and Lym= Lm + Em, equation (8) becomes

Lr = Loo+ (D - Leo) - exp (-Kdt) + ey .9)

When Ly is nonlinearly regressed against Lmy and dt, as in
equation (9), no bias estimation of K and L. results since there is no
variation associated with the independent variables Ly and dt.
Equation (9) can be further developed as

Ly = Leo + (L - €m - L) - exp (-Kdt) + e¢
= Lo + (Lyy - Do) - €xp (-Kdt) - em.exp (-Kdt) + ..{10)

so that the actual of length at marking, L, the length at recapture,
Ly, and the time at large, dt, can be used.

When using equation (10), two criteria of regression analysis are
not met. First, the independent variable Ly, is not error free. Second,
the residual error is composed of em-exp (-Kdt) and er. As such it is
no longer normally distributed nor independent of the other variables
in the equation since em-exp (-kdt) is a function of dt. Fabens’
transformation of the von Bertalanffy equation ignores the element
em-exp (-Kdt), which cannot be regressed because it is not normally
distributed and is not independent of the independent variables. In
effect, however, Fabens' treatment allows the element em-exp (-Kdt)
to artificially augment the residual error. Therefore, the estimates of
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K and L., are biased and the SE"s derived are significantly greater
than the SDs.

Since it is impossible to restore the source of bias em-exp (-Kdt)
back to Lm, an unbiased solution of K and Le. cannot be obtained
using a Fabens’ type procedure. If, however, there is reasonable
evidence to suggest that the organisms at marking belong to the same
age group, then we suggest that the average size of the organisms at
marking be used, instead of their individual sizes, in Fabens’
equation. As we have pointed out in equation (9), no bias should
result when the true value of L is used. When the size variation is
normally distributed, the average Im is an unbiased estimate of L.
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