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Abstract

Two single strains of the guppy (Poecilia reticulata, Peters) - the “Swansea” and the
“Lowestoft” — were selected forhigh temperature tolerance, five generations in the Swansea
strain and six generations in the Lowestoft strain. The results obtained were assayed with
respect tofour polymorphic loci, EST-2, GOT-2, PGM and SOD. In the selected lines of both
strains, the faster alleles of EST-2, GOT-2 and S8OD were increased in frequencybut in PGM,
the slow allele in the Swansea strain and faster allele in the Lowestoft strainincreased in
frequency in the selected lines. The results obtained were discussed in the light of the

adaptive nature of polymorphic proteins.



Introduction

Whether polymorphic proteins are adaptive or neutral to the action
of selection is a debatable question in population and evolutionary
genetics. [t appears that both natural selection and random genetic drift
are in part responsible as a force in maintaining protein polymorphism
(Powell 1975). However, the relative importance of the two has yet to be
resolved.

The problem of the adaptive role of variable proteins has been
approached from two main experimental levels in terms of the
evolutionary distances between the species being compared. On the one
hand, the enzymes of widely different organisms, e.g., mammals and
ectothermic species have been compared. On the other hand, efforts
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have been made to determine the selective advantage of different allelic
enzyme variants (allozymes) in populations of single species exposed to
different environmental conditions, e.g., temperature (Powell 1971;
Johnson 1974; Nevo et al. 1977; Hoffman 1981; Graves and Somero
1982; Graves et al. 1983), temperature and other ecological variables
(Mitton and Koehn 1975), temperature and food media (Koehn 1969)
and pollution (Nevo et al. 1978). An ample review of the molecular
mechanisms of temperature adaptation in poikilothermic organisms is
available from Hochachka and Somero (1968, 1971).

Nevo et al. (1977, 1978) tested the genetic effects of temperature
and pollution on acorn barnacles (Balanus amphitrite) and suggested
that temperature is a strong selective force in allozymic and size
variation in barnacles and that specific alleles are presumably favored
in polluted environments.

There are two general approaches to study the effect of temperature
on poikilotherms, resistance adaptation and capacity adaptation. In
addition to these two approaches, the adaptive properties involved with
environmentally induced stress can be studied for three different time
periods: direct response; compensatory acclimation for days or weeks;
and long-term genetic changes evidenced after generations.

In the present study using guppy (Poecilia reticulata, Peters)
stocks, selection for thermal adaptation was carried out by exposing fish
to high temperatures at their incipient lethal level, thereby killing some
of them. This falls urider the purview of resistance adaptation (Fry1971)
and in the present case, the genetic basis of adaptation was looked at
electrophoretically after a few generations of selection.

Materials and Methods

Both the Swansea and the Lowestoft strains, which exhibit long
established color patterns, had been kept under laboratory conditions
for approximately 10 years.

Fish were housed in fiberglass 35-1 tanks (60 x 25 ¢m) with an
underground filter bed. The culture water was made 10% saline with
“Instant Ocean” Sea Salt.

The time taken between each generation of selection was 130 days
for both strains and selection took place when the progenies were about
5-6 weeks old. One control population was maintained for each selected
line and cultured under similar conditions.



281

Heat shocks were administered by putting 15 fish, aged 5-6 weeks,
in a 250-m] beaker, containing 200 m] water. These beakers were then
placed in a thermostatically controlled hot water bath and raised to 44°C
for 8 minutes. After exposure, the fish were transferred to a recovery
tank for 2-3 hours, after which their percentage survival was calculated.
Selection continued for five generations in the Swansea strain and six
generations in the Lowestoft strain.

Electrophoretic methods followed were after Shamiand Beardmore
(1978). Most of the buffers and straining recipes were obtained from
Shaw and Prassad (1970) and Harris and Hopkinson (1976).

Results

The results of selection were assayed electrophoretically, in terms
of the effects of four polymorphic loci, at the terminating generation.
The loci were EST-2, GOT-2, PGM and SOD. The effects of selection
were assessed, in terms of distribution of the frequency of different
genotypes and of the alleles in the selected lines in comparison with the
same in the controls. It is apparent from Tables 1 and 2 that, in both
strains, EST?,, GOT?, and SOD? alleles increased in frequency in the
selected lines. Whlle w1th respect to PGM locus, the PGM allele in the
Lowestoft strain and PGM! allele in the Swansea strain increased in
frequency in the selected line. The contingency ¥ test performed on the
comparison of the allele frequencies between the control and the
selected lines for the individual loci produced significant differences
(P<0.005) for all the loci (Tables 3 and 4).

The y? tests for the conformity of the genotypic proportions to
Hardy-Weinberg expectation (Tables 5-8) showed that in the selected
line of the Lowestoft strain, significant deviations were obtained in the
PGM locus (P<0.05 and P<0.001) due to an absence of !/, homozygotes
(Table 6).

The mean heterozygosity values obtained for the individual
polymorphic loci did not show a regular trend of increase or decrease in
the control or the selected lines of both the strains. In the Lowestoft
strain, H values decreased in EST, and GOT, in the selected line and
increased in SOD and PGM. In the Swansea strain, H values at EST,,
GOT, and SOD decreased and the value at PGM increased. However,
the overa]] H values (H) decreased in the selected lines of both strains
(Tables 9 and 10).
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Table 9. Heterozygosity (H) at individual
polymorphic loci and overall (18 loci) (H)
in the control and selected (6th

generations) lines of Lowestoft stock of
guppy.

Table10. Heterozygosity (H) at individual
polymorphic loci and overall {18 loci} (H)
in the control and selected (5th
generations) lines of Swansea stock of
Buppy-

Control Selected Control Selected

Loci H H Loci H H

EST-2 0.65 047 EST-2 0.52 0.82
GOT-2 0.57 p.32 GOT-2 044 0.05
50D 0.36 0.49 80D 0.34 0.52
PGM 0.76 0.88 PGM 0.06 0.26
H 013 012 H 0.08 0.05

Table 11. Tests of conformity to Hardy-Weinberg expectations for classes of multiple
heterozygotes at four variable loci of control and selected (6th generation) lines of Lowestoft
stock of guppy. (Expected values in the brackets).

Heterozygosity class
Sample 0 1 2 8 4 x4 P
Control 2 6 2 18 2 384 »020
(1.13) , 9.21) (19.12) (16.82) (4.97)
Selected b 26 27 13 1 18964 <0.001

1.72) (15.51) (29.74) (20.96) (4.81)

Table 12. Tests of conformity to Hardy-Weinberg expectations for classes of multiple
heterozygotes at four variable loci of control and selected (5th generation) lines of Swansea
stock of guppy. (Expected values in the brackets).

Heterozygosity class
Sample 0 1 2 3 4 y il L] P
Control 8 19 22 2 0 3.6129 >0.80
(8.50) (20.55) (16.72) (4.71) (0.24)
Selected 24 24 18 2 0 1.7920 >0.70

(21.45) (28.86) (13.31) (2.29) (0.09)




201

Table13. Results of 2x § contingency chi-sijuare tests on the distribution of the heterozygosity
clags in the control and the selected (6th generation) lines of Lowestoft stock of guppy for
4 loci.

Heterozygosity class
Sample o 1 2 3 4 Total  x*(4) P
Control 2 6 21 18 2 49 11.74 <0.05
(2.83) (1296) (1944) (255 (1.21)
Selected 5 26 27 13 1 72
417 (19.04) (28.56) (1845) (1.79)
7 a2 48 37 3 121

Table 14. Results of 2 x 4 contingency chi-square tests on the distribution of the
heterozygosity class in the control and the selected (5th generation) lines of
Swansea stock of guppy far 4 loci.

Sample Heterozygosity class Total (3 P
Control 8 19 2 2 51 5.2292 >0.20
(13.95) (18.74) (16.56) (1.74)
Selected 24 24 16 2 66
(18.05) (24.26) (21.44) (2.26)
32 43 38 4 117

The distribution of the multiple heterozygote classes in the selected
lines when tested for conformity to Hardy-Weinbergexpectation showed
a significant deviation in the selected line of the Lowestoft strain (Table
11: 4* (4) = 19.64; P<0.001). In the Swansea strain the distribution
accorded with all x* values nonsignificant (Table 12). A heterogeneity x2
test on the distribution of the multiple heterozygosity classes between
the control and the selected lines showed a significant difference in the
Lowestoft strain (Table 13: ¥?/(4) = 11.74; P<0.05). In the Swansea
strain, however, a similar test did not show any significant difference
(Table 14).

Discussion

The idea that genetic variations are related to environmental
variation has roots going back to Dobzhansky and other proponents of
the balance view of natural selection. This view of natural selection was
theorized by Levins (1968) and was proven by many workers in the field
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of population biology and evolution (Koehn 1969; Powell 1971; Mitton
and Koehn 1975; Nevo et al. 1977).

The results obtained in the present study, assayed with respect to
four polymorphic loci involving the same alleles in both strains, show
that the allele frequencies of the selected lines differ significantly from
those of the control lines at all loci. In both strains, the faster alleles of
EST,, GOT, and SOD were increased significantly in the selected lines.
over the control; in the case of the PGM locus, the faster allele is favored
in the Lowestoft strain, but in the Swansea strain, the slower allele is
increased significantly over the control. The mean heterozygosities in
both strains were reduced marginally.

Itis apparent from the results that there may be a relation between
the tolerance of high thermal stress and genetic variation at the loci
mentioned, although the possibility exists of ‘hitchiking’ effects of
neutral genes which cannot be unmasked without having ideas on the
effects of various disciplinesincluding genetics, physiology, biochemistry
and ecology of the loci concerned.

Depending upon the role that an enzyme performs in the metabolic
systems, Johnson (1974) classified enzymes asregulatory, nonregulatory
and variable substrate enzymes. The regulatory enzymes are the most
sensitive in the site of action of selection; the variable-substrate enzyme
may affect metabolic rates only. According to Somero (1969) the
evolutionary changesin enzyme-substrate affinity are directed primarily
towards maintenance of controlling functions. Thus, the regulatory
enzymes would be expected to select mainly at higher temperatures to
increase thermal tolerance. It is notable with the guppy strains, except
for the GOT enzyme, that the enzymes showing increased frequencies
in the selected lines over the controls are either regulatory or variable
substrate enzymes, which might give some clues on the occurrence of
selection for adaptation to temperature,

Thermal selection of allozyme variation has been well documented
by Nevo et al. (1977) with acorn barnacles (Balanus amphitrite). A
comparative test for adaptation to cool and warmer canals of an electric
plant cooling system in barnacles produced significant differences in
frequencies in seven out of eight loci in one year; the alleles selected
were either the medium or faster in each case, and together with the
evidence that the average size and number of individuals decreased
significantly in the warmer canal, they provided evidence of a strong
directional selection in this crustacean. With the guppy, temperature
selection revealed an apparent correlation between survivaland average
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size of the fish selected, in that the average size decreased in successive
generations as the percentage survival inereased (Shah and Beardmore
1986). If, in the present study, the trend for increase in frequencies of
the faster alleles is considered in the light of the general decrease of the
average length of the fish in the selected lines, it might be indicative of
a presumed directional selection as well.

Adaptation of polymorphic proteins to thermal characteristies is
also supported by the study of Mitton and Koehn (1975) with killifish
Fundulus heteroclitus. Fishes living in a heated electric plant cooling
pond were found tohave a variability pattern different from those living
in normal coastal habitats and resembled the variation encountered in
populations from warmer latitudes. They also found significant
differences in allele frequencies in 10 out of 12 enzyme loci with respect
to environments, sexes and/or age classes.

Nevo et al. (1970) obtained the relative fitnesses of thermally
favored alleles in the barnacles by comparing the number in the
genotypes selected for in the warmer vs. cooler canal, However, as
fitness is a function of a single generation being compounded in every
successive generation and as the assessment on the distribution of the
genotypes and alleles have not been done in each generation, a similar
test for fitness of the thermally favored alleles could not have been done
in the present study. .

The meanheterozygosities (H) decreased marginally in both strains.
These reductions may be explained in the light of the Levins theory of
fitnesses (Levins 1968) that relates heterozygosity as an adaptation to
environmental heterogeneity and uncertainty; the less divergence and
uncertainty in the environment, the lower the heterozygosity. In the
present situation, in selecting fishes for thermal resistance, the method
adopted is likely to subject them to a homogeneous and predictable
environment in every generation, thus providing selection for a more
homogeneous strategy. Although involving a noncommercial species,
the present concept of the genetic effects of temperature could be useful
in planning experiments on thermal selection in commercial species
where high thermal characteristics could prove to be an important and
economic character.
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