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Abstract

The multimodal nature of size frequency distributions is a common occurrence in
fisheries analysis with modes representing potential Gaussian components in a mixed dis-
tribution. This characteristic is exploited to estimate and assess every component using any
of the several parametric models that have been proposed. In general, the success of these
procedures is dependent on the smoothness of the frequency distribution and the intelligent
(data based and complemented with additional biological information) input of initial values.
In this study we utilized nonparametric density estimators in combination with several
rules for smoothing parameter (bandwidth) selection and a smoothed bootstrapping of criti-
cal bandwidths procedure to investigate multimodality of the length distribution of Japa-
nese sea bass “suzuki” (Lateolabrax japonicus). These methods led to useful data-based
estimations with statistically significant number of modes that produced growth estimations
consistent with those obtained from fish aged by means of hard-parts (scales and otoliths)
reading, specially at smaller ages. The resulting von Bertalanffy growth expressions had
parameters inside the range of those reported in the literature. These nonparametric meth-
ods prove to be an alternative valuable tool for the analysis of mixed size distributions of
fish.

Introduction

Researchers who work with complex distribution shapes have turned in
recent years to nonparametric techniques such as nonparametric density esti-
mation (Silverman 1986), where mixed components can be detected by identi-
fying modes (local maxima) in the underlying distribution (Izenman and
Sommer 1988). The number and location of the modes may or may not corre-
spond with each individual component. There is a dependence upon both the
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spacing of the modes and the relative shapes of the component distributions.
Nevertheless, in many practical instances, the existence of more than a single
mode does suggest evidence for a mixture. In the statistical literature there
are several tests for detecting multimodality in a distribution. For example, the
DIP test was proposed by Hartigan and Hartigan (1985) to accept or reject the
unimodality hypothesis; Good and Gaskins (1980) used the penalized-llkelihood
method of density estimation together with other statistical techniques;
Silverman (1981a) combined kernel density estimation with a hierarchical boot-
strap testing procedure. The last two combined methods are nonparametric,
data-adaptive, and computationally intensive. Specific contexts often play a
prominent role in relating empirical modes to plausible mixture components.
The multimodal size frequency of fish may represent age groups containing
important growth information.

The choice of interval width (binwidth/bandwidth) is one of the central
problems in density estimation. There are several ways to select an appropri-
ate binwidth for histograms, frequency polygons, or averaged shifted histograms
and a bandwidth for kernel density estimators (KDE’s). A brief review of some
binwidth/bandwidth selection procedures and some programs to calculate them
are contained in Salgado-Ugarte et al. (1995b). Presented in the present paper
are the optimal Gaussian binwidth for histograms and frequency polygons
(Scott 1979, 1985, 1992) and the optimal bandwidth for GaussianKDE’s
(Silverman 1986). Besides, by using the ASH-WARP technique, it is possible to
calculate least squares and biased cross-validation (L2CV and BCV respectively)
for kernel density bandwidth selection (Härdle 1991).

These rules in conjunction with the oversmoothed widths (Terrel 1990)
represent a powerful tool for choosing the binwidth for histograms and fre-
quency polygons and the bandwidth for kernel density estimators (Scott 1992).

The Silverman test uses the Gaussian KDE according to the following
steps: identification of the critical bandwidths compatible with the hypothesis of
a given number of modes; drawing of a smoothed bootstrap sample for each
critical bandwidth; estimation of the corresponding densities; calculation of the
significance (p value) for the number of modes as the fraction resulting from
the count of estimations displaying more modes than the number indicated by
the critical bandwidth used divided by the total number of repetitions (boot-
strap samples). For an accounted description see Silverman (1981b, 1986) and
Izenman and Sommer (1988). A computerized implementation and examples of
application of this test to size frequency analysis of fish is presented in
Salgado-Ugarte (1995) and Salgado-Ugarte et al. (1997). A related procedure is
that of Wong (1985).

Material and Methods

For the present study, samples from the commercial catch at Tokyo Bay
of the Japanese sea bass (Lateolabrax japonicus, insertae sedis genus in
Percoidei according to Eschmeyer et al. 1996), an important species inhabiting
Japanese waters, were obtained in approximately monthly periods from Septem-
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ber 1993 to May 1995. Specimens collected during the surveys done by the
Laboratory of Fisheries Biology (Fisheries Department, University of Tokyo)
were included. A total of 406 individuals was analyzed: 109 males, 114 females
and 183 individuals of unknown sex (mainly juveniles), ranging from 162 to
664, 155 to 760, and 123 to 366 mm of standard body length respectively
(Salgado-Ugarte 1995).

To avoid drawbacks of length frequency analysis of pooled data, only fish
caught at the beginning of the growth season (Spring) were considered. From
these, only the females (n = 31) and a subsample of the individuals of un-
known sex (those aged by means of hard-part reading, n = 16) were included
(Table 1).

To calculate the KDE’s the programs written by Salgado-Ugarte et al.
(1993, 1995a, 1995b), which include the efficient algorithms of the averaged
shifted histograms (ASH) and weighted averaging of rounded points (WARP)
were used. The Silverman’s test was performed employing the specific pro-
grams presented in Salgado-Ugarte (1995) and Salgado-Ugarte et al. (1997).
The component characterization was carried out using the routines implement-
ing the Bhattacharya’s procedure written by Salgado-Ugarte et al. (1994). A
weighted nonlinear regression scheme was used to estimate the parameters of
the von Bertalanffy growth function (VBGF). Weighted nonlinear regressions
were performed using revised versions of the programs described in Salgado-
Ugarte et al. (2000).

Results

Estimations from the histogram, frequency polygon, averaged shifted his-
togram and kernel density estimation all employing the corresponding optimal
Gaussian width (Figs. 1 to 4) resulted to a multimodal distribution; at least
three modes can be distinguished.

Least squares cross-validation provided a minimum score with a band-
width of 6. The corresponding density estimation shown in figure 5 looks
undersmoothed in comparison with the previous estimates. The Gaussian ker-
nel density estimation using the biased cross-validation bandwidth (h = 92) is
a notoriously oversmoothed unimodal distribution with the indication of an ad-
ditional mode at large sizes (Fig. 6). Certainly, the distribution is not unimodal.

The results of the non-
parametric assessment of
multimodality are pre-
sented in table 2. The
value for the DIP statis-
tics was 0.0857, and the
hypothesis of unimodality
was rejected. The p values
from Silverman test in
table 2 suggest at least 6
modes.

Table 1. Number of individuals by sampling date con-
sidered for analysis. Spring.

Sample Sex

Number Date Females Unknown Total

6 19/02/94 4 14 18
7 16/03/94 13 1 14
8 14/04/94 4 1 5
9 13/05/94 10 0 10

Total 31 16 47
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Fig. 1. Histogram using the optimal
Gaussian binwidth (h = 129) and origin
at 64.5

Fig. 2. Frequency polygon with the
optimal Gaussian binwidth (h = 132) and
origin at 0

Fig. 3.  Five averaged shifted histograms
with the optimal Gaussian histogram
binwidth (h = 129)

Fig. 4. Kernel density estimate using
the optimal Gaussian bandwidth (h =
55)

Fig. 5. Gaussian kernel density
estimation using the least squares cross
validation bandwidth (h = 6)

Fig. 6. Gaussian kernel density
estimation using the biased cross
validation bandwidth (h = 92)

Table 2. Critical KDE’s bandwidths and estimated sig-
nificance levels for female and unknown sex sample
individuals, n = 47.

Number Critical p
of modes bandwidth

1 84.5 0.11
2 75.8 0.01
3 31.8 0.32
4 20.12 0.32
5 16.99 0.18
6 11.96 0.48
7 8.9 0.57
8 8.73 0.35

Note: The p values were obtained from B = 100 boot-
strap replications of size 47.

PDF created with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


299
The density estimation with 6 modes derived from the Silverman test: a

bandwidth h = (16.99+11.96)/2 » (17+12)/2 = 14.5 was considered to identify
the Gaussian components in the size mix by the Bhattacharya method. The
small mode at 220 mm was not included for considering, it is the result of the
overlapping of the adjacent components. The first five means (Table 3) were
used to estimate, by weighted nonlinear regression the von Bertalanffy growth
function, resulting in the following equation:

[ ] 9986.0r adjustede12976.773L 2)0546.1t(2068.0
t =−= +

The von Bertalanffy growth function estimated from length frequency
analysis was compared with those (Table 4) derived from weighted nonlinear

Table 3. Component means determined from the Gaussian kernel density estimation (h =
14.5), female and individuals of unknown sex, Spring, n = 47.

Group Estimated size Mean (standard body length) Standard error

0 18 149.43 4.96
1 7 286.01 6.48
2 14 351.55 7.68
3 4 452.92 8.67
4 1 501.41 15.07
5 1 754.00 14.50

Note: The sum of the estimated sizes is 45. The missing individuals are in the residual
frequency after subtracting the estimated Gaussian components.

Table 4. Weighted nonlinear regression for von Bertalanffy growth function parameter
estimation and growth performance index values by ageing method

Parameter Value Standard t value P > | t | 95% Confidence
error interval

a) Length frequency (LF) adjusted r2 = 0.9986
L∞ 773.2976 74.5034 10.379 0.000 622.8349 923.7603
K 0.2068 0.0324 6.371 0.000 0.1412 0.2723
t0 -1.0546 0.0644 -16.380 0.000 -1.1846 -0.9245
φ 3.2077

b) Scales (SC) adjusted r2 = 0.9990
L∞ 900.5134 22.8443 39.420 0.000 854.4737 946.5532
K 0.1571 0.0070 22.282 0.000 0.1429 0.1713
t0 -1.2738 0.04114 -30.730 0.000 -1.3573 -1.1902
φ 3.2195

c) Whole otoliths (WO) adjusted r2 = 0.9918
L∞ 785.5918 41.1347 19.098 0.000 702.3890 868.7947
K 0.1715 0.0211 8.122 0.000 0.1288 0.2142
t0 -1.1814 0.1777 -6.648 0.000 -1.5409 -0.8219
φ 3.1400

d) Otolith sections (OS) adjusted r2 = 0.9954
L∞ 735.4087 23.8618 30.820 0.000 687.2537 783.5638
K 0.2515 0.0172 14.609 0.000 0.2168 0.2863
T0 -1.0035 0.0655 -15.327 0.000 -1.1356 -0.8714
φ 3.2495

Note: Standard errors, P values, CI’s and correlations are asymptotic approximations. The
φ values were calculated using total length values (cm) predicted by the regression with
standard body length
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Table 5. Number of individuals by sampling date and estimated age by hard part reading.
The mean body length by age is included in the Totals column.

Sample number

Age 6 7 8 9 Total (Mean)

a) Scales (SC)
0 14 3 0 0 17 (168.18)
1 4 4 2 1 11 (257.10)
2 0 5 2 7 14 (361.29)
3 0 2 0 2   4 (462.00)

11 0 0 1 0   1 (760.00)

Total 18 14 5 10 47
b) Whole otoliths (WO)

0 3 1 0 0   4 (164.00)
1 13 6 2 3 24 (230.96)
2 0 4 2 5 11 (362.00)
3 0 0 0 1   1 (394.00)
6 0 0 0 1   1 (454.00)

15 0 0 1 0   1 (760.00)
Total 16 11 5 10 42
c) Otolith sections (OS)

0 17 1 0 0 18 (158.39)
1 1 8 2 3 14 (301.86)
2 0 3 2 6 11 (392.55)
5 0 0 0 1   1 (454.00)

14 0 0 1 0   1 (760.00)
Total 18 12 5 10 45

Note: Sample numbers correspond to the following dates (1994): 6 = 19/02; 7 = 16/03; 8 =
14/04; 9 = 13/05.

regression of the mean length at age data from hard parts readings (Table 5).
The growth curves are presented in figure 8.

Discussion

In fisheries studies, the use of modes in size frequency distributions of
aquatic organisms have been advocated as an attempt to identify groups of fish
with similar age. This would be the case if the sample of size is unbiased and

Fig. 8. Comparison of the von
Bertalanffy growth functions estimated
by length frequency (LF, circles), scales
(SC, squares), whole otoliths (WO,
triangles) and otolith sections (OS, plus
signs).

Fig.  7. Gaussian kernel density estimate
using the bandwidth suggested by the
Silverman test (h = 14.5).
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the species under analysis reproduces during a relatively short span of time at
regular periods (King 1995). There are several factors affecting the occurrence
of modes in size data such as the sample size, the distance between adjacent
means, the shape of the distribution, and the magnitude of the correspondent
variances (Caddy 1986; Erzini 1990). Schnute & Fournier (1980) remark that
length-frequency analysis tends to lump the final age-classes together if they
are in close proximity or contain small percentages of fish. In such cases it
may be impossible to distinguish the final ages, and the best approach may be
to assume that all fish beyond a certain age comprise a single group.

For the length distribution of Lateolabrax japonicus analyzed in this
study, comparing the mean lengths at age (Table 3) with those estimated by
the hard-part readings (Table 5) it is remarkable that the nonparametric as-
sessment of multimodality provided a density estimation with the modes corre-
sponding correctly to ages 0, 1 and 2 occurring in the Spring samples. The
identification of the groups of ages 1 and 2 was not evident in any of the
KDE’s using the rules for bandwidth selection. The undersmoothed L2CV and
oversmoothed BCV density estimations emphasize the high variability of the
former, the conservative tendency of the later (Härdle 1991; Scott 1992) and
the usefulness of the test of multimodality in dealing with small samples.

In relation to growth function estimation (VBGF), the weighted nonlinear
regressions were statistically significant (P values < 0.05), but only the equation
estimated from scales produced statistical significance (t values with P < 0.05)
for all the three parameter estimates (L∞, K and t0). The growth function calcu-
lated from length frequency analysis had the wider confidence intervals for the
equation parameters (Table 4). In figure 8, it will be noted that the growth curve
from length frequency analysis were very close at smaller ages to the curve from
scale reading, which means that inside the age range of 0 to 5 they can be used
to produce essentially the same results. However, the growth expressions obtained
from otoliths (whole and sectioned) were very similar to the length frequency
equation as the estimated growth parameters were contained in the correspond-
ing confidence intervals of the otolith growth functions (Table 4). The weighted
nonlinear regression attenuated the influence of estimated ages of 15 and 14 (by
whole and sectioned otoliths, respectively) for the fish with a body length of 760.

It is not possible to make direct comparisons with other studies because
none discriminated sexes in the growth estimations. However it is worth men-
tioning that the values obtained in the present study are in accordance with
the general equations reported for the species at different Japanese localities
ranging from (L∞, K and t0, respectively) 1112.503, 0.1577, -0.3115 at Wakasa
Bay (Kuwatani 1962) to 741.0699, 0.1930, -0.6595 at Sendai Bay (Hatanaka
and Sekino 1962). The growth performance index (Pauly and Munro 1984) val-
ues (Table 4), were inside of the range (3.14 to 3.35) reported in L. japonicus
section in FishBase (Froese and Pauly 2001). Assuming the same size fre-
quency structure and repeating it during four years, we used the link means
routine of FISAT (Gayanilo et al. 1993) with the four first age groups from
table 3 arriving at the following results: L∞ = 797.85; K = 0.21. These values
are reasonably close to those from the nonlinear weighted regression and inside
the confidence intervals for the quoted parameter estimates found in this work.
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Conclusions

For the analyzed data set (female and unknown sex individuals collected
in the Spring months), the modes suggested by the multimodality test were in
good agreement with the means length values from ages 0 to 2. Depending on
the hard part, the larger modes corresponded to fish of 3, 5 or 6 years old
besides the largest individual with estimated age from 11 to 14. The limited
number of specimens made it difficult to draw firm conclusions for older fish.
Clearly, the necessity of larger samples including older fish was perceived.

As a general conclusion we emphasize the fact that if the sample of
lengths contains information on the cohorts, the use of KDE’s in combination
with optimal, oversmoothed and cross-validation bandwidth rules, in addition to
nonparametric assessment of multimodality procedures such as the DIP and
over all the Silverman’s tests, has proved to be a valuable alternative proce-
dure for its extraction. In our opinion, these sets of nonparametric computing
intensive statistical procedures have an enormous potential to provide useful
guidelines for bandwidth selection leading to density estimations with a signifi-
cant number modes. More research on the subject is guaranteed. The com-
puter programs for kernel density estimators calculation, multimodality assess-
ment and Gaussian characterization are available from the first author.
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