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Abstract 

A method is presented which allows one to estimate, based on the maximum lengtha 
of a aeries of length-frequency samples, and on the theory of extreme values, a single, 
expected largest value (Lm ) and ita confidence interval. The method is applied to two aeta 
of samplea of chub macke� Ra,,trelli(/er brachysoma from the Central Philippines, 



Introduction 

Lai and Gallucci (1987) have clearly demonstrated that mis
estimation of the growth parameter, L_, of the von Bertalanffy growth 
equation, may be a source of significant error when applying length
based cohort analysis techniques. In addition, Castro and Erzini (1988) 
have indicated that unreasonable estimates ofL_ may be a source of bias 
when applying length-frequency-based analysis techniques such as 
ELEFAN (Pauly 1987). It therefore seems desirable to investigate 
methods which are designed to minimize this potential source of bias. 
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Thus, under this stochastic model for growth, the actual length of 
the fish, Y (t), is a random variable whose distribution is determined by 
the distribution of I; (t) and whose values for fixed t values will vary 
according to this probability distribution. 

An important consideration is the fact that 

E [Y (t)l = L (t) 

that is, the average in the long run of the length values of the fish of the 
same species and age is provided by the length value obtained from the 
deterministic length equation. Thus, if a large number of fish of the 
same species and age are studied, it is the average characteristic of this 
large group of fish that is predicted by the von Bertalanffy equation. 

One of the parameters affecting the value of L (t), the length 
predicted by the von Bertalanffy equation, is L_, the mean length the 
fish would have attained if the fish were to grow to a very old age. 
Various techniques of estimating L_ are found in the literature, the 
majority of which are based on a linear transformation of the von 
Bertalanffy equation. Attempts to estimate L_ independently of the von 
Bertalanffy equation were provided by such rules of thumb as: take L_ 
to be the biggest length measurement recorded for the population in 
question; or take L_ to be the average length of a number of very old fish. 
These rules imply a relationship of the type L � L ; this contribution 

max -

is devoted to presenting a method for estimating Lmax from the maximum 
lengths (L

m
) of a series oflength-frequency samples. 

This method is independent of the assumed underlying deterministic 
equation governing the growth of fish. Rather, it is based on the 
observation that various samples have different values ofLm, indicating 
that the longest length of fish of a given population is not a fixed quantity 
but a random variable which takes on different values according to some 
probabilistic law. Thus, in order to estimate Lmax, the statistical distribution 
of the Lm values must first be established. 

The distribution of the longest lengths of the chub mackerel 
Rastrelliger brachysoma (Scombridae; local name: hasa-hasa) caught in 
the Visayan Sea, Central Philippines, from January to December 1984 
was studied via the theory of extreme values developed by Gumbel 
(1954). This theory attempts to explain observed extremes arising in 
samples of given sizes, and valid for a given period, area or volume, and 
to forecast extremes that may be expected to occur within a certain 
sample, period, area or volume. 

The application of the theory of extreme values assumes that the 
following conditions are met: 
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1) The variables (length, in our case) are continuous;
2) The samples from which the extreme lengths are drawn have a

constant distribution with fixed parameters;
3) The extreme lengths are taken from independent samples.
Note that length is a continuous measure. The distribution offish

lengths is assumed normal with fixed parameters for a particular 
population in a particular area, and the various samples from which the 
extreme lengths are obtained may be treated as independent. Thus, the 
above stated assumptions of extreme value theory are met in the case 
of Lm values. 

Theoretical Considerations 

Exact Distribution of Extreme Values 

Consider the original set of length measurements. F (x) is the 
probability that any observed length is less than a specified value, x. 

Consider also the set of Lm values drawn from the original 
observations. Let cl>• (x) be the probability that the largest value is less 
than a given length x. Therefore 

cl> (x )=F"(x)
n n n 

whose derivative 

cl> (x ) = nF•·l (x ) f(x )
n n n n 

is the distribution of the largest value among n independent samples. 
Similarly, the distribution of the smallest values among n independent 

samples is: 

and 

Here x
1 

is the smallest value and x. is the largest value. 
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The probability paper is a rectangular grid where the observed 
variate x is plotted on one axis and the reduced variate y is plotted on 
the other axis. Note that if F (x) is the probability distribution of the 

variate x and cl> (y) is the probability distribution of the reduced variate 

y, then 

4> (y) = F (x).

Thus, the probability paper also includes the probability cl> (y) = F (x) 

plotted on a scale parallel to the scale of y. 
If the theory holds (that the observations x are distributed according 

to F (x)), then the observations plotted on the probability paper should 

fit the straight line given by: 

x= u+y/a ••• 5) 

An extreme-value probability paper may be constructed using 
ordinary graph paper, based on the fact that its horizontal and vertical 
axes have linear scales. The length units are arranged along the vertical 
axis, while the reduced variate y and the probabilities are plotted 

independently along the horizontal axis. 
Since the scale of the probabilities is nonlinear, this axis is constructed 

based on the linear scale of y. Values for cl> (y) are purposely selected for 
quick int.erpretation and are computed and positioned using the formula 
for 4> (y) in equation 3. (Recall that cl> (y) = F (x)). In the graph, y values 
range from -2 to 7 since cl> (y) of points outside this interval converge 
toward O and 1, respectively. 

If a normal probability paper is used instead, the most obvious 
difference is that the expected extremes will form a curved scatterplot, 
while an extreme-value probability paper clearly shows a straight line 
for such values. However, the scatter of the observations around the 
theoretical curve or line seem to be the same in both cases. 

The line of expected extremes on the extreme-value probability 
paper is a straight line because of the linear scale of the reduced variate 
y (along the horizontal axis), from where the location of the probability 
values are based, and the assumption of the existence of equation 5, 
which is another way of writing equation 4. 



Methodology 

Plotting the Observations 
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After the values of Lm are identified from their respective length
frequency samples, they are arranged in ascending order. 

They are then plotted on an extreme-value probability paper using 
plotting positions computed from the order of the observations. A 
plotting position may be interpreted as the cumulative probability 
assigned to the mth observation. 

Gumbel (1954) prefers to use the plotting position, m/(n + 1), for the 
mth observation (n is the total number of extreme values). This choice of 
plotting position enables the plotting of both the smallest and the largest 
of Lm values. Alternative positions lose either of the two mentioned 
extremes. 

An observation is plotted using its length as the ordinate and its 
plotting position as the abscissa. 

Estimation of Parameters 

The parameters u (intercept) and 1/a (slope) of equation 5 are 
estimated by ordinary least square regression. 

Generally, a Type I (or AM) regression, as preprogrammed on most 
scientific calculators and computer software, will suffice. However, for 
cases in which the data points are widely dispersed about the regression 
line, improved estimates of u and 1/a can be obtained by using a Type 
II (or GM) regression. In the latter case, the slope of the GM regression 
(1/a') is obtained from that of the AM regression (1/a) using 

1/a' = (1/a)/r 

where r is the coefficient of correlation between the x and the y n values, 
while, the corresponding intercept, u', is obtained from 

u' = i- (1/a') y
0 

(Ricker 1973). 

Here, y • and 0-
0 

are the mean and standard deviation, respectively 
of the plotting positions, m/(n + 1). y • and 0-

0 
are fixed for a specific n and 
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a table of such values is given in Gumbel's monograph. Likewise, a 
computer program which includes the computation ofy

0 
and a

0 
values 

is available (see below). 
Having computed the parameters u and 1/a. (or u' and 1/a.'), the 

theoretical straight line (equation 5), can now be fitted to the observations. 
With length as the ordinate and the reduced, variate as the abscissa, plot 
several points over the observations on extreme-value probability 
paper, then connect these theoretical points to draw the line of expected 
extremes. 

A good fit between the observations and the theoretical line implies 
that the statistical theory of extreme values holds true. 

Control Curoes 

The control curves provide a method for illustrating the goodness 
of fit of the theoretical straight line to the actual observations. To 
construct control curves, first compute the standard error of the mth 

reduced variate using: 

'In CJ(y ) = ✓<b(.y )[1 - <l>(y )] / lj)(y ) 
m m m m 

... 6) 

where <b(.y m) is the frequency of the mth extreme length computed from 
equation 3, and ,i,(y m) is the first derivative of <l>(y m); ,i,(y m) is computed 
from equation 3. With the value obtained in equation 6 as the numerator, 
solve for the standard error of the mth observation, x

m
, with: 

... 7) 

where 1/a. and n are parameters previously defined. 
The standard error ofxm computed from equation 7 is added to and 

subtracted from the length x
m 

found along the theoretical line to obtain 
the upper point and lower point of the control curves. Plot these two 
points parallel to the length axis since these are length values. If only 
one a unit is used to construct the control curves, then there is a 
probability of 0.68 that each point is contained in the area enclosed by 
the two curves. If two a units are used, the interval between the control 
curves expands and the probability increases to 0.95. 

The control curves are used as a check on the amount of s.catter of 
the extreme length values about the fitted line. In other words, they may 
be considered as confidence bands for the dispersion of observations 
about their theoretical values. 
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Analysis of the data related to control curves may be safely made 
for cll(y) values between .15 and .85. At extremes, errors may be 
encountered in interpretation. 

Expected &tremes 

An expected largest value, u
0

, (here also: Lm .. > is defined as an 
extreme length that is expected to occur in a sample of size n with a 
probability given by: 

... 8) 

Of course, the expected largest value is not the mean largest value. 
Rather, the expected extreme x = u

0 
is obtained by first getting the 

corresponding reduced variate y for the probability F(u
0

) using equation 
3. (Recall that cll(y) = F(x)). Then solve for u

0 
from equation 5 using the

parameters u and 1/a computed from the observations.
To determine the relationship of the expected largest u

0 
and the 

sample size n, the quantity a
0 

is introduced and is defined as: 

a0 = nf(u0) 

where f(u
0

) = F(u
0

) or may be computed using equation 3.
Taking the derivative of equation 8 with respect to n, the following 

is obtained: 

dujd log n = l/a
0 

•.. 9) 

Therefore, l/a0 measures the increase of u0 with the logarithm of n. 
Equation 9 is called the trend of logarithmic increase of the 

extremes and is further stated as follows: If a
0 is independent of n, u0 

increases with log n. If a. increases with n, u
0 

increases more slowly 
than log n. If a. decreases with n, u

0 
increases more quickly than log n. 

Therefore, the trend of logarithmic increase of the extremes 
determines whether expected extremes vary greatly with varying 
sample sizes. 

Results and Discussion 

Length data from fishing vessels using purse seine and trawl nets 
are considered separately. (The data used were provided by the Department 
of Agriculture and are part of an on-going fish stock assessment project). 
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Puree Seine 

For the purse seine samples, n=31; the smallest and largest Lm 
values were 18.5 and 28 cm, respectively (Fig. 1). 

There seems to be a good fit between the observed lengths and the 
theoretical line, except for Lm = 18.5 and 24 cm. The fitted line is defined 
by: 

y = 0.6124 (x - 22.38) 

The computed expected extreme u
0 

for this data set is Lmax=28.0 
cm. Taking the value of the quantity a

0 
for n = 31 and for other sample

sizes, a
0 

increases with increasing n. Therefore, based on the trend of
logarithmic increase of the extremes, the expected extreme un increases
more slowly than log n. This means that increasing n will also change
Lmax• however, the rate of increase will be rather low. 

With the value ofu
0 

given above and taking its reduced variate y, 
the length interval covered by the control curves is (26.3, 29.6 cm). There 
is a probability of around 68% that the true maximum length of R.

.. 
·•

"' 

" 

.. 

.. 

M 

.. 

54 •2 

3 
" 

" 

.. 

.. 

" 

" 

" 

ReclJced variate (y} 

Purse seine samples ,,,,,-
rf• 31 ,, .. 

,, 
.,.,,,..,.," ,, 

• 

,,,.,,/ 

0.9. o.M O.H O.N 0.916 Cl9N 0.991 

' 

Trawl samples 
n= 131 

, • 

� observed VOIUH 

-- predlct..::I values 

---� control lines 

----�U S;prob. 68 %1 

0-9 098 0.98 o.• 0.- 0.- 0,11119 

�(y) 

Fig. 1. Observed and predicted (theoretical) extreme lengths of chub 
mackerel RaatreUiger brachysoma from the Central Philippines (see 
text for interpretation). 
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brachysoma in the population sampled by the purse seiners lies in the 
interval (26.3, 29.6 cm). 

TrawlNet 

This data set (Fig.1) contains maximum lengths from 131 samples, 
based on a survey of fishing vessels using trawl nets. The figure shows 
that these maximum lengths do not greatly depart from the theoretical 
line: 

y = 0.6476 (x - 21.97) 

when the analysis is based on cl>(y) values from .15 to .85; the control 
curves indicate that the above fitted line provides a good fit for the 
survey data. However, for larger lengths, the observed points lie beyond 
the interval of the control curves and the fitted line. 

The expected extreme u0 is computed as 29.5 cm and validation of 
maximum length values is based on the interval 28.0 to 31.0 cm. 

Interpretation of Results 

Combining the results from trawls and purse seines, it can be 
stated that the value ofLmu for R. brachysoma from the VisayanSeahas
a 68% probability of being between 26.3 and 31.0 cm. 

Values of L_ for various Philippine populations of R. brachysoma 
range between24.5 and34.0 on(seeCorpuz etal.1985,lngles andPauly 
1984, respectively), which bracket the range of Lmu computed here. 
Thus, L may indeed serve for at least preliminary estimation of L 

max • 

values, independently of growth data. 
A computer program written in MSDOS BASICA is available from 

ICLARM (MC P.O. Box 1501, Makati, Metro Manila, Philippines) for 
implementation of the method presented here. 

Discussion 

The statistical theory of extreme values attempts to explain the 
occurrence of far-removed observations and to predict extreme points 
that may occur. There is a wide area of interest over which this theory 



134 

may be applied. In this case, the statistical theory of extreme values was 
applied to the maximum lengths of fish (obtained from catches of 
commercial fishing vessels) and with the objective of validating Lmax 

values obtained by other authors. 
If the initial sample distribution is known, the exact distribution of 

extremes may be easily obtained. If it is not known, but the type of 
distribution is known, the asymptotic distribution of extremes may then 
be obtained. There are three types of asymptotic distribution available: 
the exponential type, the Cauchy type and the limited distribution. The 
exponential type is emphasized since the two other asymptotic distributions 
may be transformed into this type. 

The expected extreme value (Lm.,.) for a given number of extreme
observations (n) and its corresponding confidence interval may be used 
to validate extreme length values obtained using other methods. The 
control curves can be constructed with one a unit to establish their 
distances from the theoretical line, which provide a 68% probability that 
the true maximum length lies in the length interval enclosed by the 
control curves for the computed expected extreme value. Control curves 
constructed using two a units provide the corresponding 95% probability, 
and thus express a conventional confidence interval. 
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