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Abstract

A method is presented which allows one to estimate, based on the maximum lengths
of a series of length-frequency samples, and on the theory of extreme values, a single,
expected largest value (L )and its confidence interval. The method is applied to t wo sets
of samples of chub mackerel Rastrelliger brachysoma from the Central Philippines.



Introduction

Lai and Gallucci (1987) have clearly demonstrated that mis-
estimation of the growth parameter, L_, of the von Bertalanffy growth
equation, may be a source of significant error when applying length-
based cohort analysis techniques. In addition, Castro and Erzini (1988)
have indicated that unreasonable estimates of L_ maybe a source of bias
when applying length-frequency-based analysis techniques such as
ELEFAN (Pauly 1987). It therefore seems desirable to investigate
methods which are designed to minimize this potential source of bias.
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The objective of this report is to demonstrate the utility of the extreme
value theory in estimating L from the largest lengths in length-
frequency distributions.

It is confusing to some biclogists that a deterministic growth
equation such as the von Bertalanffy growth equation is generally
obeyed when a relatively large number of fish are studied and yet the
same equation may fail miserably when applied to an individual fish
growingover time. To clarify this matter, it must be recalled that the von
Bertalanffy equation:

L=L_@-ektt) - 1)

(where L isthelength ataget; L_isthe meanlength the fish would have
reached if they were to grow to a very old age; K is a constant growth
coefficient; and t_ is the hypothetical “age” of the fish at length zero) is
adeterministic equatlon As such, itindicates that if the parameters L _,
Kandt_ arefixed, or are functionally determined, then for a partlcular
tvalue, there isonly one value of L. Thus we can imagine that if we have
two identical fish G.e., of the sarne species, population and age and
initially of the same length) and we let these two fish grow in exactly the
same environment, then after a certain period of time, the two fish
would have attained exactly the same length. Yet, observations of
growth of individual fish growing under controlled conditions do not
bear this out. Rather, the most likely event is to have the fish grow to
different lengths during the same length of time.

Clearly, fish growth is not deterministic in nature. Rather, fish
growth is better represented as a process whose development over time
is governed by probabilistic laws, i.e., as a stochastic process.

A stochastic model for growth may be taken as:

Y(t)=L{t)+&(t) w 2)

where Y (t) is the actual length of the fish at time t,

L (t) is the length that the fish would have attained if it grew
according to a deterministic equation such as the von Bertalanffy
equation, and

& (t)is arandom variable, sometimes referred to as a random noise
or a perturbation, which represents all other influences affecting
growth that cannot be exactly accounted for nor determined as in L (t).

hat The usual assumptions imposed on the random variable £ (t) are
that:

E [§ ()] = 0 and Var [£ ()] = o (a constant).
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Thus, under this stochastic model for growth, the actual length of
the fish, Y (t), is a random variable whose distribution is determined by
the distribution of & (t) and whose values for fixed t values will vary
according to this probability distribution.

An important consideration is the fact that

EY®I=L®)

that is, the average inthe long run of the length values of the fish of the
same species and age is provided by the length value obtained from the
deterministic length equation. Thus, if a large number of fish of the
same species and age are studied, it is the average characteristic of this
large group of fish that is predicted by the von Bertalanffy equation.

One of the parameters affecting the value of L (t), the length
predicted by the von Bertalanffy equation, is L_, the mean length the
fish would have attained if the fish were to grow to a very old age.
Various techniques of estimating L are found in the literature, the
majority of which are based on a linear transformation of the von
Bertalanffy equation. Attempts to estimate L independently of the von
Bertalanffy equation were provided by such rules of thumb as: take L,
to be the biggest length measurement recorded for the population in
question; or take L to be the average length of a number of very old fish.
These rules imply a relationship of the type Lmax = [L_; this contribution
is devoted to presenting a method for estimating L, from the maximum
lengths (L) of a series of length-frequency samples.

This method is independent of the assumed underlying deterministic
equation governing the growth of fish. Rather, it is based on the
observation that various sampleshave differentvalues of L_,indicating
that thelongestlength of fish of agiven populationis not a fixed quantity
but arandomvariable which takeson different values accordingto some
probabilistic law. Thus, in order to estimate L, the statistical distribution
of the L values must first be established.

The distribution of the longest lengths of the chub mackerel
Rastrelliger brachysoma (Scombridae; local name: hasa-hasa) caughtin
the Visayan Sea, Central Philippines, from January to December 1984
was studied via the theory of extreme values developed by Gumbel
(1954). This theory attempts to explain observed extremes arising in
samples of given sizes, and valid for a given period, area or volume, and
to forecast extremes that may be expected to occur within a certain
sample, period, area or volume.

The application of the theory of extreme values assumes that the
following conditions are met:
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1) The variables (length, in our case) are continuous;
2) The samples from which the extreme lengths are drawn have a
constant distribution with fixed parameters;

3) The extreme lengths are taken from independent samples.

Note that length is a continuous measure. The distribution of fish
lengths is assumed normal with fixed parameters for a particular
population in a particular area, and the various samples from which the
extreme lengths are obtained may be treated as independent. Thus, the
above stated assumptions of extreme value theory are met in the case
of L values.

Theoretical Considerations

Exact Distribution of Extreme Values

Consider the original set of length measurements. F (x) is the
probability that any observed length is less than a specified value, x.

Consider also the set of L values drawn from the original
observations. Let @ (x) be the probability that the largest value is less
than a given length x. Therefore

@ (x.)=F"(x,)

whose derivative
@ (x)=nF"(x)f(x)

is the distribution of the largest value among n independent samples.
Similarly, the distribution of the smallest values among n independent

samples is:

d (x

1" n"1

)=1-01-Fx))"
and
@, (x) =nll - F(xl)]"'l f(x,)

Here x, is the smallest value and x_ is the largest value.
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Asympiotic Distribution of Extreme Values

Even if the initial distribution of the sample is unknown, knowledge
of the type of distribution is sufficient to determine the distribution of
the extreme values, by deriving its asymptotic distribution. An asymptotic
distribution of a random variable {(maximum length, in our case) is any
distribution that is approximately equal to the actual distribution of the
extreme lengths for a large sample size.

If the variable is infinite to the right, then its cumulative distribution
function F (x) approaches 1 as quickly as the exponential function,
Variables with this characteristic have asymptotic distributions which
belong to the exponential type. Variables which are initially distributed
as exponential, normal, chi square, logistic and log-normal belongto the
exponential group. Under this type of asymptotic distribution, all
moments exist but not all distributions with existing moments belong to
this class. The distribution of extreme values belonging to this type is:

oy =e", 9 () =0ae?’, -ocy<e w3)
with the reduced variate y = o (x - u), 4

where x is the variable belonging to the exponential type (and is
continuous to the right),
Vais a measure of dispersion which gives the scale of measure
applicable to the observed value of x to that of the reduced variate y, and
u is anaverage (specifically, the mode for the exponential type) of
extreme value distribution.

Extreme-Value Probability Paper

A simple tool for the study of extreme values is the probability
paper, which gives a simple graphical method of testing the fit between
theory and observations,

Let x be a continuous variate, unlimited in both directions, and for
which a linear reduction exists:

x=u+yo=y=alx-u)

where u is a certain average and Vo a certain measure of dispersion.
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The probability paper is a rectangular grid where the observed
variate x is plotted on one axis and the reduced variate y is plotted on
the other axis. Note that if F (x) is the probability distribution of the
variate x and @ (y) is the probability distribution of the reduced variate
y, then

P (y) =Fx).

Thus, the probability paper also includes the probability ® (y) = F (x)
plotted on a scale parallel to the scale of y.

If the theory holds (that the observations x are distributed according
to F (x)), then the observations plotted on the probability paper should
fit the straight line given by:

x=u+Yya ... B)

An extreme-value probability paper may be constructed using
ordinary graph paper, based on the fact that its horizontal and vertical
axes have linear scales. Thelength units are arranged along the vertical
axis, while the reduced variate y and the probabilities are plotted
independently along the horizontal axis.

Since the scale of the probabilities is nonlinear, this axis is constructed
based on the linear scale of y. Values for ® (y) are purposely selected for
quick interpretation and are computed and positioned using the formula
for @ (y) in equation 3. (Recall that ® (y) = F (x)). In the graph, y values
range from -2 to 7 since ® (y) of points outside this interval converge
toward O and 1, respectively.

If a normal probability paper is used instead, the most obvious
difference is that the expected extremes will form a curved scatterplot,
while an extreme-value probability paper clearly shows a straight line
for such values. However, the scatter of the observations around the
theoretical curve or line seem to be the same in both cases.

The line of expected extremes on the extreme-value probability
paperis a straight line because of the linear scale of the reduced variate
y (along the horizontal axis), from where the location of the probability
values are based, and the assumption of the existence of equation 5,
which is another way of writing equation 4.
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Methodology

Plotting the Observations

After the values of L are identified from their respective length-
frequency samples, they are arranged in ascending order.

They are then plotted on an extreme-value probability paper using
plotting positions computed from the order of the observations. A
plotting position may be interpreted as the cumulative probability
assigned to the m*" observation.

Gumbel (1954) prefers to use the plotting position, m/(n +1), for the
m™ observation (n is the total number of extreme values). This choice of
plotting position enablesthe plotting of both the smallest and the largest
of L values. Alternative positions lose either of the two mentioned
extremes.

An observation is plotted using its length as the ordinate and its
plotting position as the abscissa.

Estimation of Parameters

The parameters u (intercept) and 1l/a (slope) of equation 5 are
estimated by ordinary least square regression.

Generally, a Type I (or AM) regression, as preprogrammed on most
scientific calculators and computer software, will suffice. However, for
casesin which the data points are widely dispersed about the regression
line, improved estimates of u and 1/a can be obtained by using a Type
II (or GM) regression. In the latter case, the slope of the GM regression
(1/a’) is obtained from that of the AM regression (1/a) using

1/’ = (/o)

where ris the coefficient of correlation between the x and the y  values,
while, the corresponding intercept, u’, is obtained from

w=%- )y,
(Ricker 1973).

Here,y, and o_are the mean and standard deviation, respectively
of the plotting positions, m/(n+ 1), in and ¢_ are fixed for a specificn and
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a table of such values is given in Gumbel’s monograph. Likewise, a
computer program which includes the computation of y  and o, values
is available (see below).

Having computed the parameters u and 1/a (or u' and 1/a), the
theoretical straight line (equation 5), can now be fitted to the observations.
With length as the ordinate and the reduced variate as the abscissa, plot
several points over the observations on extreme-value probability
paper, then connect these theoretical points to draw the line of expected
extremes.

Agood fit between the observations.and the theoretical line implies
that the statistical theory of extreme values holds true.

Control Curves

The control curves provide a method for illustrating the goodness
of fit of the theoretical straight line to the actual observations. To
construct contrel curves, first compute the standard error of the m*
reduced variate using:

Vn oy,) = Voiy, ) (1 - y )1/ 6(y,) )

where ™(y_) is the frequency of the m* extreme length computed from
equation 3, and ¢(y, ) is the first derivative of ®(y_,); &(y_) is computed
from equation 3. With the value obtained in equation 6 as the numerator,
solve for the standard error of the m** observation, X With:

o(x_) =Vnoly,)/ (Vno) )

where 1/a and n are parameters previously defined.

The standard error of x | computed from equation 7 is added to and
subtracted from the length x  found along the theoretical line to obtain
the upper point and lower point of the control curves. Plot these two
points parallel to the length axis since these are length values. If only
one G unit is used to construct the control curves, then there is a
probability of 0.68 that each point is contained in the area enclosed by
the two curves. If two 6 units are used, the interval between the control
curves expands and the probability increases to 0.95.

The control curves are used as a check on the amount of scatter of
the extremelength values about the fitted line. In other words, they may
be considered as confidence bands for the dispersion of observations
about their theoretical values.
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Analysis of the data related to control curves may be safely made
for ®(y) values between .15 and .85. At extremes, errors may be
encountered in interpretation,

Expected Extremes

An expected largest value, u , (here also: L__ ) is defined as an
extreme length that is expected to occur in a sample of size n with a
probability given by:

Fu)=1-1/n .. 8)

Of course, the expected largest value is not the mean largest value.
Rather, the expected extreme x = u_ is obtained by first getting the
correspondingreduced variate y for the probability F(u ) using equation
3. (Recall that ®(y) = F(x)). Then solve for u_ from equation 5 using the
parameters u and 1/a computed from the observations.

To determine the relationship of the expected largest u_ and the
sample size n, the quantity a | is introduced and is defined as:

, = nfta,)

where f(u ) = F'(u ) or may be computed using equation 3.
Taking the derivative of equation 8 with respect to n, the following
is obtained:

du/dlogn = la .. 9)

Therefore, 1/a.. measures the increase of u, with the logarithm of n.

Equation 9 is called the trend of logarithmic increase of the
extremes and is further stated as follows: If o, is independent of n, u
increases with log n. If a_increases with n, u_ increases more slowly
thanlog n. If o decreases with n, u_increases more quickly than log n.

Therefore, the trend of logarithmic increase of the extremes
determines whether expected extremes vary greatly with varying
sample sizes.

Results and Discussion
Length data from fishing vessels using purse seine and trawl nets

are considered separately. (The data used were provided by the Department
of Agriculture and are part of an on-goingfish stock assessment project).
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Purse Seine

For the purse seine samples, n=31; the smallest and largest L,
values were 18.5 and 28 cm, respectively (Fig. 1).

There seems to be a good fit between the observed lengths and the
theoretical line, except for Lm =18.5 and 24 cm. The fitted lineis defined
by:

y = 0.6124 (x - 22.38)

The computed expected extreme u for this data set is Lmu=28.0
cm. Taking the value of the quantity a_ for n =31 and for other sample
sizes, o increases with increasing n. Therefore, based on the trend of
logarithmic increase of the extremes, the expected extreme u_increases
more slowly than log n. This means that increasing n will also change
L_ .. however, the rate of increase will be rather low.

With the value of u_ given above and taking its reduced variate y,
the lengthinterval covered by the control curves is (26.3,29.6 cm). There
is a probability of around 68% that the true maximum length of R.

Reduced variate (y)
-2 =l o, | 2
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Fig. 1. Observed and predicted (theoretical) extreme lengths of chub
mackerel Rastrelliger brachysoma from the Central Philippines (see
text for interpretation).
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brachysoma in the population sampled by the purse seiners lies in the
interval (26.3, 29.6 cm).

Trawl Net

This data set (Fig. 1) contains maximum lengths from 131 samples,
based on a survey of fishing vessels using trawl nets. The figure shows
that these maximum lengths do not greatly depart from the theoretical
line:

y = 0.6476 (x - 21.97)

when the analysis is based on @(y) values from .15 to .85; the control
curves indicate that the above fitted line provides a good fit for the
survey data. However, for larger lengths, the observed points lie beyond
the interval of the control curves and the fitted line.

The expected extreme u_ is computed as 29.5 cm and validation of
maximum length values is based on the interval 28.0 to 31.0 cm.

Interpretation of Results

Combining the results from trawls and purse seines, it can be
statedthat the value of L ,_forR. brachysoma from the VisayanSeahas
a 68% probability of being between 26.3 and 31.0 cm.

Values of L_ for various Philippine populations of R. brachysoma
range between 24.5 and 34.00n (see Corpuz et al. 1985, Ingles and Pauly
1984, respectively), which bracket the range of L, computed here.
Thus, L ,, may indeed serve for at least preliminary estimation of L
values, independently of growth data.

A computer program written in MSDOS BASICA is available from
ICLARM (MC P.O. Box 1501, Makati, Metro Manila, Philippines) for
implementation of the method presented here.

Discussion

The statistical theory of extreme values attempts to explain the
occurrence of far-removed observations and to predict extreme points
that may occur. There is a wide area of interest over which this theory
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may be applied. In this case, the statistical theory of extreme values was
applied to the maximum lengths of fish (obtained from catches of
commercial fishing vessels) and with the objective of validating L
values obtained by other authors.

Ifthe initial sample distribution is known, the exact distribution of
extremes may be easily obtained. If it is not known, but the type of
distribution is known, the asymptotic distribution of extremes may then
be obtained. There are three types of asymptotic distribution available:
the exponential type, the Cauchy type and the limited distribution. The
exponential type is emphasized since the two other asymptotic distributions
may be transformed into this type.

The expected extreme value (L ) for a given number of extreme
observations (n) and its corresponding confidence interval may be used
to validate extreme length values obtained using other methods. The
control curves can be constructed with one ¢ unit to establish their
distancesfrom the theoretical line, which provide a 68% probability that
the true maximum length lies in the length interval enclosed by the
control curves for the computed expected extreme value. Control curves
constructed using two ¢ units provide the corresponding 95% probability,
and thus express a conventional confidence interval.
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