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Abstract 
Inadequate availability and unreasonable prices made fish meal an unreliable feed ingredient in aquaculture. 
Consequently, researchers have tested different plant and animal-derived protein sources as an option over the fish 
meal. The black soldier fly, Hermetia illucens (Linnaeus, 1758), larva, has been identified as a reliable protein source for 
fish meal replacement. Many studies have revealed the growth and microbiological impacts of H. illucens larvae as a 
protein source in finfish culture. However, a review of knowledge on histopathology, haematology and microbial 
changes modulated by H. illucens larvae when incorporated as a feed ingredient in finfish aquaculture is not available. 
Therefore, this study reviews the effects on the histopathology, haematology and gut-microbial properties of finfish 
fed diet incorporated with H. illucens larvae. A review of different finfish species tested up to 100 % inclusion of H. 
illucens larvae meal in their diets revealed mixed results in blood chemistry, gut microbiota, and gut histology. Most 
studies stated common positive effects such as reduced plasma cholesterol levels, increased microbial diversity, and 
increased intestinal absorption up to 50 % incorporation level. Despite the possibility of incorporating H. illucens larvae 
meal without any negative impacts on some carnivore fish species, most studies disclosed adverse effects beyond 50 
% fish meal replacement due to high chitin and crude fat levels in H. illucens larval diets. 

Keywords: fishmeal, haematology, microbiology, microflora 

Introduction 

Fishmeal has remained the primary feed ingredient for 
protein supplementation in the aquaculture industry 
for decades due to its high digestibility and balanced 
nutritional attributes. Fishmeal is widely accepted as a 
suitable source for animal feeds since it is a rich source 
of proteins, lipids, minerals, and vitamins. Millions of 
tonnes of fishmeal are usually manufactured from 
wild-caught, small marine fish that contain a high 
percentage of bones and oil (Miles and Chapman, 2012). 
Fears have been raised regarding using fishmeals in 
aquaculture with concerns of adding more pressure to 
wild fisheries (Allan, 2004). With predictions of further 
growth in the aquaculture sector (Brugère and Ridler, 
2004; Terova et al., 2021), there is an ongoing argument 
that the practice of feeding ‘fish to fish’ is inefficient and 
wasteful (Milewski, 2002).  

The expectations of aquaculture producers to reduce 
feed costs and purchase animal proteins with health 
benefits and low risk of contaminants (Naylor et al., 
2009) have led to an increased focus on alternatives 
for fishmeal (Olsen and Hasan, 2012). Numerous 
possibilities have been discovered to replace fishmeal 
with protein, derived from a range of non-fish sources 
such as by-products from land animal processing, 
microalgae, zooplankton, plants, bacteria and insects 
(Priyadarshana et al., 2021).  

Insects possess the capacity to upgrade low-quality 
organic material, require minimal water and cultivable 
land, and emit little greenhouse gases (van Huis, 2013). 
Among the potential insect species for aquaculture 
feed preparation, Hermetia illucens (Linnaeus, 1758), 
was identified as a suitable fishmeal replacer due to its 
suitability for large-scale production (Li et al., 2020) 
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and balanced amino acid profile similar to fishmeal 
(Barroso et al., 2014). The fat level and fatty acid profile 
of black soldier fly larvae (BSFL) were highly variable 
with the nature of the substrate used for them to grow 
(St‐Hilaire et al., 2007). However, Priyadarshana et al. 
(2021) observed varying degrees of success in studies 
on several finfish species in which fish meal was 
substituted with different levels of BSFL meal. These 
positive and negative effects of BSFL inclusion seem 
to be modulated by gut microbiota (Rimoldi et al., 2019; 
Terova et al., 2019), haematology (Magalhães et al., 
2017; Abdel-Tawwab et al., 2020) and histomorphology 
(Lock et al., 2016; Li et al., 2019) of the digestive system 
in various finfish species. This review presents the 
effects of BSFL incorporated diets on gut microbiota, 
haematology and histomorphology of the digestive 
system in finfish aquaculture.  
 
The high fat and chitin content in BSFL were the 
possible causes behind the diverse growth 
performances in different finfish species 
(Priyadarshana et al., 2021). The digestive tract 
sections in fish exhibit many adaptations in both 
structure and function related to their feeding habits 
and evolutionary position (Moraes and de Almeida, 
2020). Especially in the case of chitin-like nitrogenous 
polysaccharides, they must be further broken down by 
chitinolytic enzymes i.e., chitinases and chitobiases, 
before being utilised. Though some fish inherit the 
ability to break down chitin governed by chitinolytic 
enzymes, most fish do not exhibit that ability (Ringø et 
al., 2012). Thus, the investigation of the use of BSFL as 
a dietary component on intrinsic factors, i.e., gut 
microbiota, haematology and histomorphology of the 
digestive system, is essential to illustrate the diverse 
growth performances (Priyadarshana et al., 2021). 
 
Effects of H. illucens Larval Meal 
Incorporated Diets on Histo-
morphological, Gut Microbial and 
Haematological Aspects of Finfish 
 
Effects of H. illucens larval meal 
incorporated diets on histomorphology 
of digestive system of finfish 
 
Numerous studies have evaluated the effects of 
incorporating BSFL meal on gut histomorphological, 
gut microbial and haematological aspects. Table 1 
summarises histomorphological changes observed in 
finfish fed by different levels of BSFL meal. 
  
Effects on histomorphology of digestive system of 
carnivorous finfish species 
 
Changes in the digestive system of finfish species 
have been evaluated over different feed ingredients 
with plant (Agbebi et al., 2013; Ogueji et al., 2020) and 
animal origins (Akhter, 2015). Finfish species such as 
North African catfish, Clarias gariepinus (Burchell, 
1822), tested using different feed ingredients, i.e., 
craib leaf (Lysiphyllum strychnifolium (Craib, 1924)) 

extracts (Munglue and Dasri, 2015), cashew nut 
(Anacardium occidentale Linnaeus, 1753) meal 
(Iheanacho et al., 2019), doum plant (Hyphaene 
thebaica (Linnaeus,1753)) fruit powder (Al-Khalaifah et 
al., 2020) showed many adverse effects on the 
digestive system of carnivorous finfish (Krogdahl et al., 
2003). Positive results in the increase of height and 
perimeter of gut mucosal folds were obtained with a 30 
% BSFL replacement of fishmeal fed to C. gariepinus 
fingerlings (Talamuk, 2016). Nutrient uptake increases 
with the enlarged mucosal surface area, causing a 
positive impact (Huiling et al., 2012). 
  
Blood vessel endothelium of Atlantic salmon, Salmo 
salar Linnaeus, 1758, fed up to 100 % BSFL meal 
incorporated diets, was observed normal, without any 
signs of perivenule bleeding and vacuolisation in 
parenchyma (Lock et al., 2016). Furthermore, the 
midgut epithelium was normal, no loss of structural 
changes or inflammation in the muscularis (Lock et al., 
2016). Similarly, Li et al. (2019) revealed no evidence of 
significant histopathological alterations among S. 
salar pre-smolts fed with 100 % BSFL diet. They 
reported no signs of local inflammatory response with 
BSFL diet groups. However, a distinct hyper-
vacuolisation was observed in the proximal intestine of 
S. salar fed with the fishmeal diet, while that effect was 
less prevalent in BSFL diet groups (Li et al., 2019; Li et 
al., 2020). As Ismaiel et al. (2015) reported, the 
bioactive components in H. illucens larvae were the 
possible reason for intestinal hyper-vacuolisation. Li 
et al. (2020) reported a substantial effect of steatosis 
in the proximal and distal intestines of S. salar. The 
root cause of steatosis is poor nutrient absorption, 
which results in a condition known as floating faeces 
(Penn, 2011). This nutrient malabsorption or steatosis 
was predominantly associated with high-fat 
deposition in the lumen of the intestine (Bonvini et al., 
2015).  
 
A noticeable increase in villus width, enterocyte width 
and microvilli height were observed in juvenile 
Barramundi Lates calcarifer (Bloch, 1790), fed with 45 
% poultry by-product meal (PBM) + 10 % H. illucens (HI) 
(Chaklader et al., 2019). Moreover, they observed a 
remarkable size reduction in adipocytes at the same 
feeding, whereas no significant effects were observed 
between control and 90 % PBM + 10 % HI diets 
(Chaklader et al., 2019).  
 
Up to 64 % incorporation of BSFL meal in juvenile 
Japanese seabass Lateolabrax japonicus, (Cuvier, 
1828), diets showed no impairments in microvilli 
structure, villus length, goblet cell count, muscular 
thickness (Wang et al., 2019). However, they observed 
a vacuolar degeneration in the hepatocytes, with the 
incorporation of BSFL meal beyond 16 %.  
 
Poma et al. (2017) revealed the high chitin content of H. 
illucens meal as a possible cause of vacuolar 
degeneration. In contrast, the fish meal replacement 
with soybean meal showed muscle thickness and villus
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Table 1. Effects of different per cent inclusion of black soldier fly, Hermetia illucens, larvae meal on histomorphology of digestive 
system of finfish species. 

 
 
height reduction (Zhang et al., 2018). Ostaszewska et al. 
(2010) revealed that deficiencies in the amino acid 
profile as the possible reason for the adverse 
conditions in the intestinal epithelium. As Alegbeleye 
et al. (2011) described, retarded absorption of amino 
acids correlated with the high chitin contents, 
especially in insect meals. 
  
No significant alterations were reported in the 
intestinal structure, i.e., villus height of submucosa of 
rainbow trout, Oncorhynchus mykiss (Walbaum, 1792), 
fed with BSFL meal incorporated diets up to 50 % 
(Renna et al., 2017). Mild changes in glycogen 
deposition in the liver, white pulp hyperplasia and 
haemosiderosis in the spleen were observed among 
fishmeal and BSFL meal diet groups. However, up to 50 
% of BSFL meal incorporation showed no substantial 
changes in gut histopathology, i.e., mucins and villus 

fragments, in O. mykiss (Elia et al., 2018).  
 
Contrary, Cardinaletti et al. (2019) announced a 
remarkable increase in fat accumulation in the 
hepatocytes at 50 % BSFL incorporation. Further, they 
reported a shortened intestinal fold length in the 
medium tract of the intestine and the presence of 
goblet cells that produce neutral mucins with BSFL 
meal incorporation. Furthermore, Dumas et al. (2018) 
revealed that the villi in the anterior intestine were 
notably shorter than the control at 26.4 % BSFL 
incorporation. The villus length correlated with weight 
gain, fat accumulation and lipid absorption (Taylor et 
al., 2021); thus, shorter villi might lead to poor growth 
performances. Up to a 37.5 % BSFL meal incorporation 
while replacing 50 % dietary fishmeal is suggested for 
Siberian sturgeon Acipenser baerii Brandt, 1869, 
without any impairments in liver and spiral valve 

Finfish species  
BSFL inclusion level  
(% of fish meal 
replacement) 

Effects on histomorphology of digestive system Reference 

North African catfish  
Clarias gariepinus (Burchell, 
1822) fingerling 

Up to 30 % No negative effects until 30 % inclusion. 
Slightly increased mucosal fold height and 
perimeter with BSFL incorporation up to 30 %   

Talamuk (2016) 

Barramundi  
Lates calcarifer (Bloch, 1790) 
juvenile 

10 % No negative effects until 45 % poultry 
byproduct meal (PBM) + 10 % HI (H. illucens) 
inclusion. Increased villus and enterocyte width 
and microvilli height at 45 % PBM + 10 % HI 

Chaklader et al. 
(2019) 

Siberian sturgeon Acipenser 
baerii Brandt, 1869 juvenile 

Up to 50 % No negative effects on liver and spiral valve 
histology until 37.5 % defatted BSFL meal 
inclusion. Reduced thickness in muscular layer 
at 15 % BSFL incorporation.  

Caimi et al. (2020); 
Józefiak et al. 
(2019a) 

Atlantic salmon  
Salmo salar Linnaeus, 1758     
post-smolt, pre-smolt 

Up to 100 % No negative effects until 100 % inclusion. No 
signs of hyper-vacuolisation with BSFL 
incorporation. Insignificant mild hepatic 
steatosis at 100 % fishmeal replacement 

Lock et al. (2016); 
Li et al. (2019); Li 
et al. (2020) 
 

Japanese seabass 
Lateolabrax japonicus 
(Cuvier, 1828) juvenile 

Up to 64 % No impairments observed in villus length, villus 
width, inherent thickness, muscular thickness 
and goblet cells per villus up to 64 %. Slight 
vacuolar degeneration in hepatocytes beyond 16 
% 

Wang et al. (2019) 

Common carp 
Cyprinus carpio Linnaeus, 
1758 juvenile 

Up to 100 % No negative effects until 50 % inclusion. Mild 
hepatic necrosis in liver beyond 50 % and 
irregular shaped hepatocytes, and apoptotic 
cells with small pyknotic nuclei at 100 % 
fishmeal replacement 

Li et al. (2017) 

Rainbow trout Oncorhynchus 
mykiss (Walbaum, 1792) 
fry, juvenile 

Up to 75 % No negative effects until 50 % inclusion. 
Mucosal cell count augmentation and thickened 
muscularis up to 75 % BSFL incorporation. 
Higher liver lipid accumulation beyond 50 % 
inclusion 

Renna et al. 
(2017); Elia et al. 
(2018); Dumas et 
al. (2018); 
Cardinaletti et al. 
(2019);   

Zebra danio  
Danio rerio 
(Hamilton, 1822) 
whole life cycle 

Up to 100 % No negative effects until 50 % inclusion. No 
intestinal inflammation was observed even at 
100 % BSFL incorporation. General hepatic 
steatosis beyond 75 % inclusion and 
intracellular lipid accumulation at 14 and 21-
days of feeding 

Vargas et al. 
(2018); 
Zarantoniello et 
al. (2019)  
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histopathology (Caimi et al., 2020). However, Józefiak 
et al. (2019a) claimed that the thickness of the mucosal 
layer remarkably increased in A. baerii fed with 15 % 
Tenebrio molitor Linnaeus, 1758. In contrast, the 
thickness was reduced with 15 % BSFL meal 
incorporation. Moreover, thickness of the muscular 
layer also notably increased with T. molitor, not with 
BSFL incorporation. However, thickened muscularis is 
considered to positively impact digestion and 
absorption (Sarvestani et al., 2015) and, together with 
thickened mucosa, serve as an adaptation for better 
utilisation of insect diets (Guilbard et al., 2007). 
 
Effects on histomorphology of digestive system of 
omnivorous finfish species 
 
There are several reports evaluating the effects of 
different feed ingredients on the gut histomorphology 
of omnivorous fish. For instance, Cyprinus carpio 
Linnaeus, 1758, has been tested by feeding plant 
protein sources such as soybean meal (Zhang et al., 
2012). Furthermore, some studies focused on using 
animal protein sources such as Musca domestica 
Linnaeus, 1758, larva (Ogunji et al., 2011) and defatted 
Bombyx mori Linnaeus, 1758, pupae (Zhang et al., 2013) 
for omnivorous finfish species. However, feeding trials 
regarding BSFL meal on C. carpio juveniles discovered 
some mild hepatic necrotic signs in the liver at 75 % 
and 100 %. Moreover, debris was found in the microvilli 
beyond 50 % fishmeal replacement by BSFL meal (Li et 
al., 2017).  
 
Hepatic steatosis is an excessive accumulation of 
triglycerides in the hepatocytes (Wang et al., 2006). 
The hepatic steatosis was found among zebrafish 
Danio rerio (Hamilton, 1822) at 100 % (Vargas-Abúndez 
et al., 2018) and beyond 75 % (Zarantoniello et al., 2020) 
BSF prepupae incorporated diets. Feeding BSF 
prepupae grown on corn meal-fruit and vegetable 
mixture (50:50) resulted in intracellular lipid 
accumulation in D. rerio at 14 and 21-days of feeding 
(Vargas-Abúndez et al., 2018). However, no intestinal 
inflammation was observed among D. rerio, even up to 
a 100 % BSFL meal incorporation (Zarantoniello et al., 
2020). Ample amounts of medium-chain saturated 
fatty acids (MCSFA) in insect diets were found as a 
potential cause of the hindered inflammatory activity 
(Lichtenstein et al., 2010). Moreover, Vargas-Abúndez 
et al. (2018) found a vast number of mucous cells in the 
intestine of D. rerio fed with BSF prepupae that are 
grown on corn meal-fruit and vegetable mixture 
(50:50). Increased mucosal cell count is an indication 
of the intestinal inflammation (Söderholm et al., 2002).  
 
It can be concluded that micro morphological 
alterations and inflammatory activities in the finfish 
intestine are mainly associated with the chitin levels in 
BSFL meals. In addition, the high-fat content in BSFL 
meals directly influenced hepatocytic lipid 
accumulation. Therefore, incorporation levels beyond 
75 % were ineffective for most finfish species 
(Zarantoniello et al., 2019). 

Effects of H. illucens larval meal 
incorporated diets on finfish gut 
microbiota 
 
Several reports evaluate the influence of different 
dietary ingredients on the gut microbiota of different 
livestock species (Borrelli et al., 2017; Kawasaki et al., 
2019) and finfish species (Ringø and Olsen, 1999; 
Bolnick et al., 2014; Ringø et al., 2016). Moreover, the 
gut microbiota of H. illucens larvae has also been 
investigated, and Actinobacteria (Actinomyces spp.), 
Firmicutes (Bacillus spp.), Proteobacteria (Providencia 
spp.), Bacteroidetes (Dysgonomonas spp.) were found 
to be the key inhabitants (Bruno et al., 2019). Table 2 
shows the effects of BSFL meal incorporated diets on 
finfish gut microbiota. 
 
Effects on gut microbiota of carnivorous finfish species 
 
Mycoplasma (Zarkasi et al., 2014; Jin et al., 2019), 
Aliivibrio (Karlsen et al., 2017; Fogarty et al., 2019) and 
Borrelia spp. (Godoy et al., 2015; Zarkasi et al., 2016) 
have been identified as the key intestinal inhabitants of 
the wild and captively reared S. salar. 
 
When S. salar was fed with a 10 % BSFL diet, at the 
phylum level, the results showed a higher abundance 
of Firmicutes, Actinobacteria, Proteobacteria and 
Tenericutes in intestinal digesta samples. 
Spirochaetes, Proteobacteria, Firmicutes, 
Tenericutes and Actinobacteria were the major 
inhabitants in intestinal mucosa samples (Li et al., 
2021). The above-mentioned microbial groups have 
also been reported in BSFL gut microflora (Bruno et al., 
2019). The abundance of Actinobacteria (Actinomyces) 
(Beier and Bertilsson, 2013) and Firmicutes (Bacillus) 
(Cody, 1989), was almost positively related to chitin 
degradation.  
 
In contrast to the findings of Li et al. (2021), chitinase 
activity or the presence of chitinolytic bacteria were 
not found in the midgut of turbot Psetta maxima 
(Linnaeus, 1758) with up to 76 % BSFL incorporation in 
their diets, even though they primarily feed on 
crustaceans. The absence of chitinolytic bacteria in P. 
maxima could be due to prolonged exposure to chitin-
free diets (Kroeckel et al., 2012). 
 
Monopterus albus (Zuiew, 1793) fed with 7.5 % fishmeal 
replaced (15.78 % BSFL incorporation) diets showed an 
increase in Proteobacteria spp., where the increment 
was significant at the 7.5 % fishmeal replacement. 
Further, Hu et al. (2020) reported a reducing trend in 
Firmicute spp. where the reduction was remarkable at 
the 7.5 % fishmeal replacement. The Proteobacteria to 
Firmicutes ratio was related to dietary lipid 
assimilation (Marques et al., 2015). 
 
Intestinal mucosa of O. mykiss fed with partially 
defatted BSFL meal (up to 50 %), showed a notably 
higher microbial diversification, with the highest 
biodiversity at 25 % BSFL group. Proteobacteria and  
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Table 2. Effects of different per cent inclusion of black soldier fly larvae (BSFL) meal on the gut microbiota of diverse finfish species. 
 

Finfish species  
BSFL inclusion rate 
(% of fish meal 
replacement) 

Effects on gut microbiota Reference 

Atlantic salmon  
Salmo salar Linnaeus, 
1758 sea water phase 

10 % No negative effects until 10 % inclusion. 
Clear differences in microbial communities 
of intestinal digesta and mucosa 

Li et al. (2021) 

Asian swamp eel 
Monopterus albus (Zuiew, 
1793) juvenile 

Up to 7.5 %  No negative effects until 7.5 % fishmeal 
replacement Remarkable increase in gut 
Proteobacteria and reduction in gut 
Firmicutes 

Hu et al. (2020) 

Rainbow trout 
Oncorhynchus mykiss 
(Walbaum, 1792) 
fry, juvenile 

Up to 50 % No negative effects until 50 % inclusion. 
Increased microbial diversity with the BSFL 
incorporation 

Bruni et al. (2018);   
Huyben et al. (2019); 
Józefiak et al. (2019b); 
Rimoldi et al. (2019); 
Terova et al. (2019) 

Turbot  
Psetta maxima 
(Linnaeus, 1758) 
juvenile 

Up to 76 %  No negative effects until 76 % inclusion. No 
chitinase enzyme activity or chitin 
degrading bacteria 

Kroeckel et al. (2012) 

Zebra danio  
Danio rerio 
(Hamilton, 1822) 
whole life cycle 

100 %  Increased gut microbial alpha diversity with 
the incorporation of H. illucens meals 

Zarantoniello et al. 
(2019) 
 
 

 
 
Actinobacteria phyla dominated the intestinal mucosa 
samples. However, amongst those phyla, Aeromonas 
rivipollensis was the only group of abundant microbes 
in the fish meal incorporated diet group. In contrast, 
Acinetobacter spp., Brevundimonas spp., 
Pseudomonas spp., Carnobacterium divergens, 
Citrobacter gilleni, Curtobacterium flaccumfaciens, 
Delftia acidovoran, and Kluyvera intermedia were 
predominantly found in BSFL diet groups. The phyla 
Proteobacteria and Firmicutes dominated the digesta 
samples of O. mykiss juveniles (Bruni et al., 2018). 
Further, at the phylum level, the abundance of 
Firmicutes in O. mykiss gut was notably increased with 
a 30 % BSFL and defatted BSFL diet groups. Moreover, 
the Actinomycetales and Lactobacillales order 
increased in the 30 % pre-pupae and larvae diet groups 
(Huyben et al., 2019). As reported by Rimoldi et al. 
(2019), a higher bacterial diversity was also associated 
with the incorporation of BSFL (up to 30 %) into the 
diets of O. mykiss, where Mycoplasma was the 
predominant genera. However, a reduction in the 
relative abundance of genera-Proteobacteria was 
observed. At the same time, the abundance of 
Actinobacteria phylum remarkably increased with the 
BSF prepupae diet groups of up to 30 %.  
 
Furthermore, it was emphasised that the BSF prepupa 
meals positively modify fish gut microbiota in terms of 
richness and diversity while increasing the host-
beneficial bacteria, i.e., lactic acid and butyrate-
producing bacteria counts (Terova et al., 2019). 
Moreover, Aerococcaceae, Lactobacillaceae, 
Enterococcaceae and Leuconostocacea were the 
most common LAB families found in BSFL-fed O. 
mykiss. In addition, Rimoldi et al. (2019) reported 

reduced counts of Gram-negative bacteria, namely 
Shewanellaceae, Neisseriaceae and Enterobacteriaceae 
at 20 % BSFL meal incorporation.  However, the phyla 
Actinobacteria, Firmicutes, Proteobacteria and 
Tenericute mainly dominated the core gut microbiota 
of O. mykiss (Desai et al., 2012; Wong et al., 2013; 
Ingerslev et al., 2014a; Ingerslev et al., 2014b; Lyons et 
al., 2017a; Lyons et al., 2017b). 
  
Especially, LAB in finfish gut microbiota has a positive 
impact on health, as they are capable of secreting 
bacteriocin-like compounds which can suppress 
pathogenic microbial activities (Merrifield et al., 2010; 
Dimitroglou et al., 2011; Gudiña et al., 2015). Similarly, 
the incorporation of insect meals of Blatta lateralis 
(Walker, 1868), H. illucens, Gryllodes sigillatus (Walker, 
1868) and T. molitor Linnaeus, 1758, led to a high gut 
microbial diversity and amplification of beneficial 
bacteria in O. mykiss (Józefiak et al., 2019b). Moreover, 
the abundance of Clostridium spp. i.e., C. coccoides, 
was beneficial because they could perform unique 
functions, including homeostasis regulation in the 
finfish gut and suppression of invasive microbes 
(Frank et al., 2007; Ye et al., 2014; Kurakawa et al., 
2015). High availability of chitin in the later stages of 
BSF, i.e., early and late prepupa (Xiao et al., 2018), and 
prebiotic properties of fermenting chitin (Rimoldi et 
al., 2019) in the fish gut were the possible reasons 
behind higher microbial diversity. In addition, Choi et 
al. (2012), Wu et al. (2012), Józefiak and Engberg (2017), 
Vogel et al. (2018), discovered a prominent 
antimicrobial activity of BSFL meal extracts against 
Gram-negative bacterial families, i.e., Shewanellaceae, 
Neisseriaceae and Enterobacteriaceae. 
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Effects on gut microbiota of omnivorous finfish 
species 
 
Reports of much higher diversity in the gut microbiota 
of omnivorous finfish species occur similar to the 
carnivorous finfish species. Beyond 50 % of full-fat 
BSF prepupal meal incorporation in zebrafish diets 
showed the highest gut microbial alpha diversity. 
Further, the availability of Vibrio and 
Mycoplasmataceae was retarded with the 
incorporation of BSF prepupal meal, whereas 
Cetobacterium spp. was the most prevalent taxon 
(Zarantoniello et al., 2019). Brugman et al. (2014) 
reported that T-lymphocytes in zebrafish gut can 
suppress the outgrowth of Vibrio spp. Furthermore, 
Zarantoniello et al. (2019) revealed that BSF prepupal 
meal incorporated diets could stimulate genes (il10, il1b 
and 340 tnfa) coupled with immune response, and thus, 
capable of suppressing the activities of virulent 
pathogens. The high chitin and fat content associated 
with BSFL meals were the possible reasons for high 
gut microbial activity (Tran et al., 2015; Sypniewski et 
al., 2020).  
 
A highly diversified microbial population affects gut 
health, whereas poor microbial diversity allows the 
amplification of antagonistic pathogens (Sekirov et al., 
2010; Apper et al., 2016). Acinetobacter spp. like 
synergistic bacterial species, plays a vital role in 
nutrient digestion (Ramírez and Romero, 2017; Wang et 
al., 2018). Moreover, Acinetobacter species secrete 
amylase, cellulase, chitinase and phytase-like 
enzymes that inhibit the growth and development of 
Vibrio spp. (Askarian et al., 2012). Besides, 
Carnobacterium spp. can boost specific immunity and 
promote protein and carbohydrate digestion 
(Mansfield et al., 2010; Ringø et al., 2010; Al-Hisnawi et 
al., 2015). Butyrogenic activity associated with 
Clostridium spp. i.e., C. cluster also benefits finfish 
health (Koh et al., 2016; Pryde et al., 2002; Esquivel-
Elizondo et al., 2017). Moreover, most studies have 
revealed that high fat and chitin in BSFL act as the key 
determinants of the high microbial diversity and the 
growth of beneficial gut microflora for the host. 
 
Effects of H. illucens larval meal 
incorporated diets on finfish 
haematology 
 
Several studies were conducted to elucidate the effect 
of BSFL meal on the haematological parameters of 
finfish species, as summarised in Table 3. 
 
Effects on carnivorous finfish haematology 
 
Unique haematological properties were observed 
among different finfish species such as Argyrosomus 
regius (Asso, 1801), C. gariepinus, Oreochromis niloticus 
(Linnaeus, 1758), hybrid, Sparus aurata Linnaeus, 1758, 
and Totoaba macdonaldi (Gilbert, 1890), for the dietary 
ingredients; soybean (Trejo-Escamilla et al., 2017), 
spirulina (Raji et al., 2018), canola (Zhou and Yue, 2010), 

poultry by-product (Karapanagiotidis et al., 2018) and 
chicken feathers (Psofakis et al., 2020). The blood 
chemistry of finfish has also been investigated using 
insect-based protein sources. As claimed by Freccia et 
al. (2016), overall performance together with plasma 
protein concentrations notably increased with the 
incorporation of speckled cockroach (Nauphoeta 
cinerea (Olivier, 1789)) in the diets of Nile-tilapia. 
 
Incorporating 75 % BSFL in the diet of C. gariepinus 
revealed that haematological parameters 
(haemoglobin content, white blood cell (WBC) and 
erythrocyte (RBC) count, mean corpuscular 
volume (MCV), packed cell volume (PCV), mean 
corpuscular hemoglobin (MCH), mean corpuscular 
hemoglobin concentration (MCHC), lymphocytes, 
monocytes and neutrophils) remained unaffected 
(Fawole et al., 2020). However, triglyceride and total 
bilirubin contents were markedly lower in 50 % BSFL 
diet group. 
  
Haemoglobin, haematocrit, MCV, MCH, MCHC, total 
serum protein, albumin, globulin, serum alanine 
aminotransferase, aspartate and plasma cell counts 
were not affected in European bass, Dicentrarchus 
labrax (Linnaeus, 1758), fry with up to 50 % fish meal 
replacement by BSFL meal (Abdel-Tawwab et al., 
2020). Despite the cholesterol, the rest of the plasma 
metabolites, i.e., plasma glucose, total proteins, and 
triglycerides, remained unaffected for the fishmeal 
and BSFL meal diets (up to 45 % fishmeal replacement) 
fed to D. labrax. Plasma cholesterol levels were 
remarkably reduced with the replacement of fishmeal 
by 45 % (Magalhães et al., 2017). Similarly, plasma 
cholesterol, triacylglycerol, high-density lipoprotein 
cholesterol and malondialdehyde levels of L. japonicus 
were comparably lower in the defatted BSFL meal diet 
of up to 64 % than fishmeal diet group (Wang et al., 
2019).  
 
The presence of chitin (Diener et al., 2009) and MCSFA 
(Li et al., 2017) in diets was investigated as a possible 
cause of plasma cholesterol depletion. Chitosan, a 
chitin derivative, can bind with cholesterol micelles 
(Khoushab and Yamabhai, 2010) to restrict cholesterol 
uptake (Shiau and Yu, 1999; Chen et al., 2015). However, 
according to Hu et al. (2017), plasma cholesterol and 
nitric oxide (NO) levels significantly increased at a 30 % 
fishmeal replacement with BSFL meal in yellow catfish 
Pelteobagrus fulvidraco (Richardson, 1846), while the 
inhibition of superoxide radical anion formation was 
significantly reduced (Hu et al., 2017). Kaushik et al. 
(1995) described that dietary cholesterol content 
significantly influences plasma cholesterol levels. 
Nitric oxide is a harmful compound that can cause 
oxidative stress in organisms (Turko et al., 2001). Park 
et al., (2014) reported a high radical scavenging activity 
in BSFL and BSF pupa extracts and, therefore, can 
arrest the formation of NO. Nonetheless, Hu et al. 
(2017) reported that at a 30 % fish meal replacement 
rate, the antioxidant activity of BSFL was insufficient 
to suppress NO formation in P. fulvidraco. 
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Table 3. Effects of different per cent inclusion of black soldier fly (BSFL) meal on haematology of different finfish species. 
 

 
 
Russian sturgeon Acipenser gueldenstaedtii Brandt 
and Ratzeburg, 1833 juveniles, fed with a 0.2 % 
probiotic mixture of Bacillus subtilis and a homogenate 
of BSFL, indicated a remarkable increment in the 
plasma haemoglobin content from 65 to 77 g per litre 
(Ushakova et al., 2016). Elevated plasma haemoglobin 
content reflects perfect finfish health and activeness 
(Ponomarev et al., 2002). 
 
Effects on omnivorous finfish 
haematology 
 
Tippayadara et al. (2021) stated that the counts of RBC, 
WBC, haemoglobin, haematocrit, MCV, MCHC, red 
blood cell distribution width and platelet values were 
not affected with up to 100 % fishmeal replacement by 
BSFLM in O. niloticus. Nonetheless, for Mozambique 
tilapia, Oreochromis mossambicus (Peters, 1852), the 
incorporation of BSF prepupae into the diets at 0.5 
g.kg-1 reduced plasma erythrocyte sedimentation rate 
(ESR), while increasing plasma haemoglobin and 
glucose levels (Ushakova et al., 2018). The absence of 
gut inflammation and pathogenic activities were the 
major reasons behind the lower ESR. Furthermore, O. 
mossambicus fed a 0.25 % probiotic mixture of Bacillus 
subtilis and a homogenate of BSFL showed a 

significant reduction in plasma cholesterol levels 
(Ushakova et al., 2016). However, elevated levels of 
chitin in BSFL and prepupa meals seemed to act as a 
beneficial factor regulating blood parameters such as 
plasma haemoglobin content, RBC, WBC and ESR, 
within the safe limits and beneficial for finfish blood 
chemistry. 
 
Conclusion 
 
Species-dependent changes in haematology, gut 
microbiota, and histomorphology of the digestive 
system were observed with the incorporation of black 
soldier fly larvae (BSFL) meal into finfish diets. Even 
when up to 100 % BSFL meal was incorporated, 
positive effects on blood chemistry, gut microbiota, 
and histomorphology of the digestive system were 
observed. The plasma cholesterol level was 
significantly reduced in the majority of cases. 
Amplification of the bacterial diversity was associated 
with BSFL meal-included diets. In most cases, a 
significant increase in mucosal thickness and 
hepatopancreatic lipid accumulation were observed in 
finfish intestines. Despite a few negative impacts on 
some omnivore finfish species, gut microbiota, 
haematology and histomorphology of the digestive 

Finfish species  
BSFL inclusion 
rate (fish meal 
replacement) 

Effects on haematology Reference 

North African catfish  
Clarias gariepinus (Burchell, 
1822) fingerling 

Up to 75 % Triglyceride and total bilirubin contents were 
significantly lower in 50 % BSFL diet group 

Fawole et al. (2020)  

European seabass 
Dicentrarchus labrax (Linnaeus, 
1758) fry, juvenile 

Up to 50 % No negative effects on haematology until 50 
% fishmeal replacement. Plasma cholesterol 
level reduced with the BSFL incorporation 

Magalhães et al. 
(2017); Abdel-
Tawwab et al. 
(2020)  

Japanese seabass Lateolabrax 
japonicus (Cuvier, 1828) juvenile 

Up to 64 % Plasma cholesterol, triacylglycerol, high 
density lipoprotein cholesterol and 
malondialdehyde levels were reduced at 48 % 
and 64 % fishmeal replacement 

Wang et al. (2019) 

Mozambique tilapia Oreochromis 
mossambicus (Peters, 1852) 
fry, juvenile 

- Plasma cholesterol level and erythrocyte 
sedimentation rate reduced. Increments in 
plasma haemoglobin and glucose levels 

Ushakova et al. 
(2016); Ushakova et 
al. (2018) 

Nile tilapia Oreochromis niloticus 
(Linnaeus, 1758) fingerlings 

Up to 100 % White blood cell count, erythrocyte count, 
haemoglobin, haematocrit, mean 
corpuscular volume, mean corpuscular 
haemoglobin concentration, red blood cell 
distribution width and platelet values were 
not affected up to a 100 % fishmeal 
replacement 

Tippayadara et al. 
(2021) 

Danube sturgeon Acipenser 
gueldenstaedtii Brandt & 
Ratzeburg, 1833 fry 

- Increased plasma haemoglobin content Ushakova et al. 
(2016) 

Yellow catfish Pelteobagrus 
fulvidraco (Richardson, 1846) 
juvenile 

Up to 30 % Plasma cholesterol and nitric oxide (NO) levels 
significantly increased at a 30 % fishmeal 
replacement 

Hu et al. (2017) 
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system were positively affected by up to 50 % 
inclusion. However, more studies would be essential 
for further validation of the BSFL meal as a protein 
source in finfish aquaculture. 
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