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Abstract 
 

This paper investigates the extent, dynamics, and factors influencing technical efficiency (TE) and capacity utilisation 
(CU) in small-scale fisheries (SSF) using a two-stage data envelopment analysis (DEA) approach covering the period 
2010–2012. A considerable extent of boat-level technical inefficiency, capacity underutilisation and scale inefficiency 
were evident. On average, TE and CU levels under the constant returns to scale (CRS) and variable returns to scale 
(VRS) models declined over time. The TE and CU scores of 2010 remained unaltered with the addition of ‘fishing time’ 
as an input to the model. The proportion of boats with unitary scale efficiency (SE) decreased from 26 % in 2010 to 12 
% in 2012. The underutilisation rates of the inputs ‘crew’ and ‘fishing time’ ranged from 15.5 % to 31.6 % and 15.8 % to 
28.6 %, respectively. Among the species category, the extent of excess capacity was 70 % to 156 % and 47 % to 119 % 
under the CRS and VRS models, respectively. The second-stage DEA results indicated that the explanatory variables 
‘fishing location’, ‘catch per unit of effort’ (CPUE), ‘fuel costs’ and ‘crew share’ significantly influenced CU under the CRS 
model. In contrast, the significant influence of subsidies and other operating costs were noted under the VRS model. 
For the TE case, ‘age’, ‘education’, ‘subsidy’ and ‘CPUE’ were found to be significant under the CRS and VRS models. 
Other significant variables were found in the study under CRS and VRS models. Finally, the results from the 
descriptive and empirical analysis under the two-stage DEA model are discussed together with policy implications. 

 

Keywords: DEA, scale efficiency, excess capacity, Tobit regression, input utilisation 
 

 
 

Introduction 
 
The sustainability of small-scale fisheries (SSF) is a 
growing concern as failure to SSF will have adverse 
socio-economic implications for both local and global 
communities and will seriously affect the livelihoods of 
small-scale fishers (FAO, 2017). This consensual 
concern necessitated the assessment of technical 
efficiency (TE), of harvesting capacity and capacity 
utilisation (CU) in SSFs. Such assessments should 
provide direction to decide on the future course of 
actions to make meaningful progress towards 
sustainability (Sharma and Leung, 1998; Tingley and 
Pascoe, 2005) and to correct inefficient use of 
economic resources (Kirkley and Squires, 2003). 
 
In the light of the above context, the assessment of TE 
and CU is of practical importance for the Sultanate of 

Oman (hereafter Oman), as the fisheries sector, 
especially the traditional SSF sector,  plays a vital 
socio-economic role in the country’s development and 
economic diversification campaigns  (MNE, 2007a; 
Bose et al., 2010). In 2019 SSF produced 555 thousand 
tons (about 96 % of total landings) with a gross value of 
approximately US$750 million. They provided direct 
employment to 50,405 small-scale fishers and 
contributed to foreign exchange earnings of about 
US$270 million (MAF, 2020). The sector has been 
managed through five-year development plans (MNE, 
2007b) aimed at enhancing socio-economic benefits 
through: sustainable utilisation of fisheries resources, 
improving fleet performance, and governance 
mechanisms (MNE, 2007a). ‘Vision 2040’ for the 
fisheries and aquaculture sector envisions a profitable 
and ecologically sustainable fisheries sector in Oman 
(World Bank, 2015).  
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However, a lack of knowledge about existing fleet 
capacity and the CU rate is a major issue (World Bank, 
2015). There are insufficient empirical studies on the 
assessment of fleet performance in Oman. Such 
studies could provide scientific evidence on the time 
dynamics of TE and CU, capacity output, and the 
extent of excess capacity, which are of central interest 
to policy makers.   
 
This paper has the following objectives. Firstly, to 
examine the dynamics of the TE and CU measures for 
the boats sampled each year and for the boats that 
appeared consistently in the sample (hereafter, as 
‘common boats’). Secondly, to examine the sensitivity 
of the average TE and CU scores reported by Al-Siyabi 
and Bose (2018) after the inclusion of an additional 
variable input (‘fishing time’) into the model. For this 
purpose, the identical representative sample of 97 
boats used by Al-Siyabi and Bose (2018) for 2010 was 
retained. This helps the consistency of the model’s 
results and strengthens the findings reported by Al-
Siyabi and Bose (2018). Thirdly, to measure the scale 
efficiency of the representative boats and their trend 
over the study period. Fourthly, to estimate the extent 
of capacity output and excess capacity for each 
species category. Finally, to examine the statistical 
significance of a set of potential variables affecting 
the CU and TE scores of the common boats as 
mentioned above.   
 
This paper is the first to investigate the time dynamics 
of TE, CU, measure the extent of economies of scale 
and the excess capacity in the SSF sector in Oman. In 
addition, the paper has global relevance as a country-
specific case study to exemplify the recommendation 
of the FAO ‘Code of Conduct’ in relation to the effective 
management of fishing capacity (FAO, 1995). 
Furthermore, this case study complements a 
comparatively limited global literature on the 
economic performance of SSF in developing countries 
(Salas et al. 2007; Pomeroy, 2012). 
 
Materials and Methods 
 
Study area 
 
Dhofar is one of the eight coastal Governorates of 
Oman (the other seven are: Musandam, North Al 
Batinah, South Al Batinah, Muscat, South Ash 
Sharqiyah, and AlWusta).  It has ten Wilayahs 
(provinces) of which seven (Shalem & Al Halaniyat, 
Sadah, Mirbat, Taqah, Salalah, Rakhyut and Dhalkut) 
are coastal (Fig. 1). Dhofar’s productive marine 
ecosystem is influenced by strong upwelling from 
seasonal monsoon winds  (Anderson and Prell, 1993). 
 
Total fish landings in Dhofar increased from 25,679 
tons in 2010 to 74,359 tons in 2019; an annual growth 
rate of about 12.5 %, the increase predominately in 
demersal and pelagic species. In the same period, 
gross value increased from about US$42.6 million to 
US$104 million, an annual growth rate of about 10.4 %.  

 
Fig. 1. Map of Sultanate of Oman, showing Dhofar 
Governorate and its coastal Wilayahs depicting the study 
area on the extent, dynamics, and factors influencing 
technical efficiency and capacity utilisation in small-scale 
fisheries. 
 
 
The number of boats increased from 3,758 to 4,651; an 
annual growth rate of about 2.4 % over the same 
period (MAF, 2020). The registered small-scale fishing 
boats and dhows in 2019 represented about 19 % of 
the national fishing fleet and are dominated by 
fibreglass boats operating in coastal waters and 
carrying out daily fishing trips.  
 
The number of fishers increased from 8,157 in 2010 to 
11,394 in 2019; an annual growth rate of about 3.8 %. In 
2019, the CPUE measured by number of boats and 
fishers were about 16 ton.boat-1 and 6.5 ton.fisher-1, 
respectively. 
 
Al-Siyabi (2018) noted that Dhofar surpassed the 
annual national growth rate with regard to the number 
of fishers, boats and landings. Using a non-
parametric test, Al-Siyabi (2018) observed significant 
variability in landings (but not in gross value) between 
provinces. Further details on Dhofar fisheries can be 
found in Al-Siyabi (2018). 
 
Empirical model 
 
The measurement of TE and CU in fisheries found its 
theoretical origin in Farrell (1957). DEA- a non-
parametric linear programming approach pioneered 
by Charnes et al. (1978) and further developed in Färe 
et al. (1994), is routinely used to measure the degree 
of TE and CU in fisheries in both developed and 
developing countries (Al-Siyabi and Bose, 2018). The 
concept of TE is inherently linked to the economic 
profitability of a fisher, a decision-making unit (DMU),  
as it measures the ability of a DMU to harvest the 
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maximum level of output for a given set of inputs and 
a given state of production technology (Farrell, 1957). 
The TE measure (expressed as a percentage) 
represents a boat’s efficiency within a group relative 
to the observed best performing (i.e. fully technically 
efficient) boats in that group. 
 
To meet the research objectives outlined above, a 
two-stage DEA model was utilised. In the first stage, 
two sub-models used by Al-Siyabi and Bose (2018) 
were employed along with an additional input variable 
(‘fishing time’) to estimate TE, CUobserved, CUunbiased, and  
SE scores under the constant returns to scale CRS 
and variable returns to scale VRS assumptions 
respectively. The description of various constraints 
under CRS and VRS conditions represented by these 
two sub-models, representation of parameters and 
variables involved, and the formula for calculating TE, 
CUobserved and CUunbiased are detailed in Al-Siyabi and 
Bose (2018). A non-parametric test was performed to 
check whether the distributional pattern of TE 
measures under both the CRS and VRS models 
differed over the study period. The test results 
allowed the calculation of the SE scores. Following 
Färe et al. (2001) and  Tingley and Pascoe (2005), a 
non-increasing return to scale (NIRS) condition was 
imposed into the second sub-model of the first-stage 
DEA model.  TE scores were then obtained to 
calculate the SE measure - as a ratio of TE estimates 
under the CRS and NIRS models - to assess the status 
of the scale of operation of DMUs. Lastly, the input 
utilisation rate (IUR) variable, which is defined as the 
level of variable input usage required to operate at full 
capacity utilisation, was also calculated to assess 
whether the variable inputs were fully utilised. The 
DEA models were estimated using the general 
algebraic modelling system (GAMS) optimisation 
package. A review of various aspects of non-
parametric efficiency literature in fisheries and some 
examples of empirical research on TE and CU in 
fisheries can be found in Pascoe and Greboval (2003) 
and Al-Siyabi and Bose (2018), respectively. 
 
In the second-stage of DEA, the CU and TE scores 
obtained for the common DMUs in the first-stage and 
for the combined species category were regressed on 
a set of explanatory variables (age, education, 
experience, subsidy, costs, crew share, and stock 
productivity) using the Tobit regression model. In a 
comparative study, Hoff (2007) observed the 
adequacy of Tobit’s model in representing the 
second-stage DEA model. 
 
Description of data 
 
The data for outputs and inputs used in the first-stage 
DEA were obtained from the Ministry of Agriculture 
and Fisheries (MAF). Data for individual boat 
characteristics such as length (in feet) and engine 
power (in horsepower) were for 2010–2014. Data on 
species landings and value, gear types, duration of 
fishing trips (hours) and crew for the period 2010–2012 

were collected from routine surveys using the 
probability sampling procedure proposed by the FAO 
in the 1980s.  
 
Initial scrutiny of the survey data for the period 2008-
2018 revealed that the boat-level information was 
relatively better for the period 2010–2012 in selecting 
representative boats based on the frequency of 
fishing trip.  The data revealed that the identification 
(ID) number was missing for a considerable number of 
boats (about 91 % of 5283 observations in 2010), so 
these boats were removed from the data. Boats that 
appeared less frequently in the 2010, 2011 and 2012 
survey data and with zero catch of either large pelagic 
(e.g. yellowfin tuna Thunnus albacares (Bonnaterre, 
1788), longtail tuna Thunnus tonggol (Bleeker, 1851), 
large jacks of family Carangidae, kawakawa 
Scombridae, kingfish Scomberomorus commerson 
(Lacepède, 1800)), demersal (e.g. emperor of family 
Lethrinidae, seabream Sparidae, grouper Serranidae, 
croaker Sciaenidae) or other species (such as sardine 
of family Clupeidae, Indian mackerel Scombridae, 
anchovy Engraulidae, small jacks Carangidae, 
cuttlefish Sepiidae) were also removed to reduce the 
potential bias due to noisy observation in the data set 
(Holland and Lee, 2002). Following Al-Siyabi and Bose 
(2018), the trip-level catch for each DMU was 
aggregated to obtain annual data for each DMU. This 
process resulted in 97 boats in 2010, 84 boats in 2011 
and 57 boats in 2012 for the empirical analysis. Only 24 
boats consistently appeared in the sample common 
across the study period and 22 boat owners were 
available for interview. The data were also unbalanced 
concerning the number of observations per boat in 
the survey. However, the sample sizes used in the 
first-stage (97, 84, and 57) and second-stage (22) DEA 
models meet the ‘degrees of freedom’ requirement of 
21 observations calculated using the formula 
proposed by Cooper et al. (2006) as follows:  
 
Number of observation (N) ≥ max {n x m, 3 (n + m)}  
 
where n = number of inputs and m = number of 
outputs in the model. 
 
Data for explanatory variables such as ‘age’, ‘fisher 
education’, ‘fisher experience’, ‘costs of fishing’ and 
‘subsidies’ (received by fisher) used in the second-
stage DEA analysis were collected using a 
questionnaire survey during March and April 2017. In 
addition, the CPI for fish (2007 = 100) for Dhofar 
Governorate was collected from the National Centre 
for Statistics and Information (NCSI) for the years 
2010–2012. Two of the twenty-four common DMU 
fishers were not available for interview. Therefore, 22 
DMUs were used in the final analysis. These 22 DMUs 
belong to four homeports, namely: Mirbat (5), Salalah 
(3), Rakhyut (3) and Dhalkut (11). Twelve out of the 
twenty-two received subsidies from the MAF.  
 
The survey data for the variables included in the 
second-stage analysis were adjusted to the study 



Asian Fisheries Science 34 (2021):63–72 66 

 
 
 

periods (2010–2012) by scaling down some variables 
(such as ‘age’ and ‘experience’) and by expressing other 
variables (such as ‘price’ and ‘costs’) in constant 
prices. The cost of fuel was calculated based on fuel 
prices between 2010 and 2012, which was found to be 
fixed at 0.114 OMR/litre (1 Omani Rial (OMR) ≈ 2.59 US$), 
and the CPI for fish and seafood products (2007 = 100) 
was used as a proxy for price. Both CPUE and the 
Malmquist index (MI) were experimented as proxies for 
stock conditions in the Tobit model. 
 
Results and Discussion 
 
Table 1 presents the results of descriptive statistics 
about the input and output variables used in the 
analysis. Table 1 shows that the representative DMUs 
are comparatively more homogeneous in boat length, 
crew members, and fishing time than engine power. 
The apparent heterogeneity in engine power reflects 
the choices made by individual fishers of using more 
than one engine with different horsepower. Higher 
variability (measured by the standard deviation) in 
output variables compared to input variables may be 
due to seasonality and should not be treated as noise 
in the data (Al-Siyabi and Bose, 2018). 
 
Table 2 presents the mean estimates of capacity (θ1) 
and efficiency (θ2) parameters, along with the average

 score of TE and CU (biased and unbiased) measures 
under the CRS and VRS assumptions. The mean TE 
score under the VRS model was higher than that of 
the CRS case. The result indicates that the presence 
of the convexity constraint under VRS caused more 
boats to be identified as technically efficient. The 
mean TE score (less than unity) under the CRS and 
VRS models indicates that the representative boats 
were on average operating in a technically inefficient 
manner, which implies that output can be increased 
without increasing variable input use. The findings are 
in line with other studies such as Tsitsika et al. (2008), 
Ceyhan and Gene (2014), and Pham et al. (2014). 
 
The average CUunbiased estimate under the CRS model 
indicated inefficiency in using variable inputs (i.e. 
‘crew’ and ‘fishing time’) by the representative DMUs 
across the study period. The average CU measure 
suggests that output can be increased without 
incurring any additional physical capital costs. The 
inclusion of additional variable inputs in the first-
stage DEA did not change the extent of TE and CU 
scores of 2010, as reported by Al-Siyabi and Bose 
(2018). This is perhaps due to the low level of 
variability in fishing time across the study period.  
 
Apart from the average estimates, the TE and CU 
measures’ frequency distributions at the DMU-level 
displayed in Figure 2 indicate a considerable degree 
 
 

Table 1. Statistics summary of the inputs and outputs in the first-stage data envelopment analysis for 2010–2012. 
 

Year 2010 2011 2012 
Number of DMU boats (N) 97 84 57 

 
Min Max Mean (SD) Min Max Mean (SD) Min Max Mean (SD) 

Fixed inputs 
   Boat length (feet) 17 25 21 2.54 17 26 22 2.35 17 26 22 2.45 
   Boat power (hp) 40 150 56 23.08 30 120 56 21.84 30 130 55 18.98 
Variable inputs 
   Number of crew (person) 1 3 2 2.04 1 3 2 0.62 1 4 2 0.66 
   Fishing time (h) 3 8 6 1.11 3 8 5 0.82 3 6 5 0.81 
Outputs 
   Catch of large pelagic (kg) 0.33 178.90 28.93 35.71 0.7 169.4 32.85 36.38 0.77 311.11 27.30 45.36 
   Catch of demersal (kg) 4.39 193.75 66.64 50.26 2.0 296.0 68.86 60.58 0.39 252.42 69.37 51.64 
   Catch of other fish (kg) 0.50 495.46 51.93 101.46 0.2 769.6 52.45 99.74 0.23 300.00 26.02 43.78 

 
 
Table 2. Estimates of technical efficiency, capacity utilisation, and scale of efficiency measures under the constant returns to 
scale and variable returns to scale conditions. 
 

  
2010 2011 2012 
Mean (SD) Mean (SD) Mean (SD) 

CRS 
   Capacity parameter (θ1) 2.854 2.372 3.771 2.745 3.298 1.882 
   Efficiency parameter (θ2) 2.401 1.674 2.955 2.110 2.739 2.225 
   Technical efficiency (TE) 0.567 0.275 0.492 0.279 0.513 0.262 
   Capacity utilisation (CU)   
     CUbiased 0.519 0.275 0.403 0.257 0.435 0.249 
     CUunbiased 0.896 0.119 0.818 0.173 0.847 0.146 
VRS 
   Capacity (θ1) 2.435 2.081 3.105 2.325 2.798 2.096 
   Efficiency (θ2) 1.740 1.126 2.181 1.431 1.882 1.304 
   Technical efficiency (TE) 0.727 0.273 0.622 0.296 0.685 0.267 
   Capacity utilisation (CU)   
    CUbiased  0.608 0.299 0.487 0.286 0.520 0.278 
    CUunbiased 0.835 0.229 0.784 0.228 0.753 0.209 
Scale efficiency (SE) 0.797 0.237 0.816 0.236 0.770 0.239 



67 Asian Fisheries Science 34 (2021):63–72 

 

      

         

0%

20%

40%

60%

80%

TE-CRS

2010 2011 2012

0%

20%

40%

60%

80%

TE-VRS

2010 2011 2012

0%

20%

40%

60%

80%

CU-CRS 

2010 2011 2012

0%

20%

40%

60%

80%

CU-VRS

2010 2011 2012

 
Fig. 2. The frequency distribution of capacity utilisation unbiased and technical efficiency scores for the small-scale fisheries 
in Oman. 
 
 
of technical inefficiency and capacity underutilisation 
over the study period. 
 
The non-parametric Wilcoxon signed-rank test 
revealed that the distributional pattern of TE 
measures under both the CRS and VRS models differ 
significantly at the 5 % level indicated by the 
corresponding Z-scores (-7.374, P < 0.0001), (6.955, P 
< 0.0001) and (-6.154, P < 0.0001) for 2010, 2011, and 
2012, respectively. The significant differences 
between the TE measures under the CRS and VRS 
conditions led to scrutiny of the SE measure, as the 
differences possibly indicate that the representative 
boats were not operating at an optimum scale.  The 
results showed that the SE-scores of 74 %, 76 %, and 
88 % of the representative boats were less than in 
2010, 2011, and 2012, respectively. With reference to 
the utilisation rate of variable inputs, the results 
indicated that the underutilisation rate for ‘crew’ 
ranged from 15.5 % to 31.6 %, while the range for 
‘fishing time’ was 15.8 % to 28.6 % over the study 
period.  
 
Table 3 presents the estimates of capacity output and 
excess capacity for all species categories under the 
CRS and VRS models. The excess capacity estimate 
(in percentages) indicated that the sampled boats 
failed to fully utilise their capacity over the period. 

The extent of excess capacity increased for each 
species category over the period under the CRS and 
VRS models. This result is not unusual. In Alaska, 
Felthoven et al. (2002) found for the crab fishery that 
the excess capacity estimate ranged from 133.47 % to 
325.18 % in 2001. 
 
Second-stage DEA: Tobit regression 
 
The descriptive statistics of CUunbiased and TE scores 
for the twenty two DMUs and independent variables 
used in the Tobit model are presented in Table 4. 
 
The extent of the underutilised capacity and technical 
inefficiency in harvesting operations was noted from 
the results. Higher variability in various cost elements 
compared to other explanatory variables may be due 
to the nature of fishing operations adopted by fishers, 
and the variability in crew’s share is influenced by the 
amount of catch. Further scrutiny of the TE scores of 
the common DMUs revealed that in the majority of the 
cases they were declining under the CRS and VRS 
assumptions over the study period. In addition, an 
increasing trend in scale inefficiency was observed. 
 
Tables 5 and 6 present the model results for CU and 
TE under the CRS and VRS assumptions. The final 
selection of the model was determined by the 
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Table 3. Fleet capacity output and excess capacity under the constant returns to scale and variable returns to scale conditions. 
 

Year 
Species 
category 

Catch 
(ton.year-1) 

Technical efficient 
output (ton.year-1) 

Capacity output 
(ton.year-1) 

Excess capacity 
(ton.year-1) 

Excess capacity 
(%) 

CRS VRS CRS VRS CRS VRS CRS VRS 

2010 

Large pelagics 648.3 1144.2 915.8 1319.5 1145.0 671.2 496.7 103.5 76.6 

Demersal 1493.1 2585.9 2155.6 2868.3 2549.1 1375.2 1056.0 92.1 70.7 

Other fish 1163.6 1777.1 1491.9 1981.0 1710.6 817.4 547.0 70.3 47.0 

2011 

Large pelagics 626.4 1197.6 1010.5 1446.5 1288.4 820.0 661.9 130.9 105.7 

Demersal 1313.0 2647.1 2189.2 3364.0 2881.6 2051.1 1568.7 156.2 119.5 

Other fish 1000.2 2089.4 1755.9 2369.8 2113.7 1369.6 1113.6 136.9 111.3 

2012 

Large pelagics 367.3 745.0 563.2 857.6 742.6 490.4 375.3 133.5 102.2 

Demersal 933.2 1693.6 1372.4 2056.9 1845.5 1123.7 912.3 120.4 97.8 

Other fish 350.1 679.1 530.5 840.6 749.8 490.5 399.7 140.1 114.2 

 
 
Table 4. Descriptive statistics of the variables used in the Tobit Model (n = 22): 2010–2012. 
 

Variable  Assumptions Mean Max Min SD 

Dependent  Aggregate species model 
CUunbiased 

CRS 
0.915 1.000 0.530 0.124 

TE  0.640 1.000 0.253 0.248 
CUunbiased 

VRS 
0.883 1.000 0.300 0.214 

TE 0.796 1.000 0.309 0.253 
Independent  
Age (years) 45 61 29 8 
Experience (years)  26 39 13 7 
CPUE (kg/boat) 7.115 7.759 6.751 0.461 
MI (productivity index) 1.016 2.39 0.41 0.373 
CPI (price index) 229.067 242.7 217 10.631 
Price (OMR) 0.766 1.258 0.14 0.207 

Cost (OMR) 

 Fuel  2077.794 2989.333 1437.667 413.323 
Other operation  6826.818 10541.95 3325.931 1926.078 
Maintenance  111.147 262.76 26.581 56.221 
Crew share 3417.806 18403.81 0 4723.957 

   OMR: Omani Rial; SD: standard deviation. 
 
 
Table 5. Regression results for capacity utilisation under the constant returns to scale (CRS) and variable returns to scale (VRS) 
assumptions. 
 

Variable 
CRS VRS 

Coefficient Std. Error Prob.   Coefficient Std. Error Prob.   

Constant 1.3950 0.5286 0.0083 3.9670 1.6037 0.0134 

Location -0.0619 0.0193 0.0014 -0.0997 0.0546 0.0677 

Age -0.0070 0.0075 0.3484 -0.0311 0.0186 0.0950 

Education -0.0058 0.0434 0.8934 -0.0269 0.1044 0.7968 

Experience  -0.0054 0.0057 0.3403 -0.0039 0.0170 0.8167 

Subsidy 0.0497 0.0566 0.3800 0.3826 0.1555 0.0139 

CPUE -0.3139 0.1066 0.0033 -0.2369 0.2715 0.3828 

Costs of fuel 0.0003 0.0001 0.0001 0.0003 0.0003 0.3685 

Other operation costs 7.07E-06 1.31E-05 0.5884 0.0001 3.23E-05 0.0417 

Maintenance costs -0.0008 5.80E-04 0.1722 0.0004 0.0018 0.8235 

Crew share 1.21E-05 5.67E-06 0.0331 1.65E-05 1.91E-05 0.3886 

CPI 0.0083 0.0043 0.0547 -0.0012 0.0125 0.9231 

Summary statistics and diagnostics 

SE of regression 0.1082 AIC criterion 0.3069 0.1946 AIC criterion 1.1677 

SSE 0.6209 Schwarz criterion 0.7382 2.0080 Schwarz criterion 1.5990 

Log likelihood 2.8721 H-Q criterion 0.4773 -25.5340  H-Q criterion 1.3381 

RMSE 0.0969 LR test 37.191 (0.0001) 0.1744  LR test  27.2405 (0.0042) 
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Table 6. Regression results for technical efficiency under the constant returns to scale (CRS) and variable returns to scale (VRS) 
assumptions. 
 

Variable 
CRS VRS 
Coefficient Std. Error Prob.   Coefficient Std. Error Prob.   

Constant 1.4950 0.6390 0.0193 2.6108 0.9977 0.0089 

Location -0.1192 0.0243 0.0001 -0.0889 0.0463 0.0549 

Age -0.0377 0.0108 0.0005 -0.0620 0.0185 0.0008 

Education -0.1720 0.0623 0.0058 -0.4844 0.0990 0.0001 

Experience  0.0130 0.0075 0.0811 0.0184 0.0131 0.1600 

Subsidy 0.3144 0.0633 0.0001 0.6279 0.1360 0.0001 

CPUE 0.3713 0.0591 0.0001 0.5625 0.1051 0.0001 

Costs of fuel 0.0004 0.0001 0.0007 -1.19E-05 0.0002 0.9501 

Other operation costs 2.93E-05 1.60E-05 0.0669 -4.08E-05 3.20E-05 0.2022 

Maintenance costs -0.0002 0.0007 0.7318 -0.0007 0.0013 0.5896 

Crew share -1.04E-06 5.97E-06 0.8612 -2.81E-05 1.07E-05 0.0084 

CPI 0.0013 0.0018 0.4914 0.0102 0.0035 0.0038 

Summary statistics and diagnostics 

SE of regression 0.1479 AIC criterion -0.0056 0.1717 AIC criterion 0.8015 

SSE 1.1599 Schwarz criterion 0.4257 1.5628 Schwarz criterion 1.2328 

Log likelihood 13.1850  H-Q criterion 0.1648 -13.4494  H-Q criterion 0.9719 

RMSE 0.1326 LR test (p value)  84.0885 (0.0001) 0.1538 LR test (p value)  64.1141 (0.0001) 

 
 
performance of the model selection criteria and the 
likelihood-ratio (LR) test. The estimated root-mean-
square error (RMSE) value was used to measure the 
forecast performance of the models as the Tobit 
analysis does not produce a ‘goodness-of-fit’ 
measure. 
 
With reference to the CU model under the CRS 
assumption, the variables of ‘location’, ‘CPUE’, ‘fuel 
costs’ and ‘crew share’ were statistically significant at 
the 5 % level. On the other hand, under the VRS model 
only two variables, ‘subsidy’ and ‘other operation costs’ 
were statistically significant at the 5 % level. 
 
The model results for TE under the CRS and VRS 
assumptions indicated that six variables were 
statistically significant at the 5 % level, of which ‘age’, 
‘education’, ‘subsidy’ and ‘CPUE’ were common in both 
models. Other significant variables were ‘location’ and 
‘costs of fuel’ under the CRS model, and ‘crew share’ 
and ‘CPI’ under the VRS model (Table 6). 
 
In comparing the results of the models for CU and TE, 
it was observed that the variables of ‘location’, ‘costs’, 
‘subsidy’ and ‘CPUE’ are significant in both models. 
The significance of the location variable reflects 
variability in the performance of fishers from different 
geographical locations and is consistent with the 
findings of Al-Siyabi (2018).  The positive influence of 
the fuel costs reflects the fact that an increase in fuel 
expenditure forced the DMUs to fish harder to cover 
the associated costs and hence improve CU and TE. 
The positive coefficient of the subsidy variable 
indicates that the subsidy program enhances CU and 
TE through technical improvements. With reference 
to the crew share and CPUE variables, sign reversals 
of the estimated coefficients were observed in the CU 

and TE models. The CPUE variable generally 
embraces the supply-side factor, and encompasses 
the seasonal variability of catch and productivity 
change over the period. The crew share variable is 
influenced by the amount of catch and hence 
connected to CPUE.  Dudley (2008) argued that the 
acceptable level of CPUE by fishers is influenced by 
the profitability of fishing and the expected price of 
the fish. While any improvement in CPUE positively 
affects the technical efficiency of DMUs, the present 
finding suggests that when small-scale fishers have 
earned their expected income through improved 
CPUE they may be reluctant to improve their boat 
capacity to their maximum potential. 
 
The anecdotal information in relation to small-scale 
fishers’ practices in Oman suggests that fishers are 
reluctant to stay longer at sea, which is evident from 
the average duration of the fishing trip (about 5.4 h). 
  
With regard to the TE model, the education variable 
has a negative and significant influence on the 
technical efficiency of DMUs. This result is in contrast 
with Sharma and Leung (1998), Fousekis and Klonaris 
(2003), Esmaeili (2006), Shen and Shen (2013) and  
Jamnia et al. (2015), but is in line with Tingley et al. 
(2005). The result suggests that fishers with relatively 
better educational attainment considered fishing as a 
part-time profession which is a common occurrence 
in Oman. 
 
The ‘age’ variable carried a negative sign which 
indicates that older fishers are inefficient compare to 
younger fishers. This is in line with other studies. For 
example, Fousekis and Klonaris (2003) found a 
negative influence of fishers’ age (51 years and above) 
on TE while Tingley et al. (2005) showed age had 
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negative effects on the efficiency of potters and net-
liner boats in the English Channel. Furthermore, the 
study by Esmaeili (2006) for fisheries in the Persian 
Gulf of Iran found that age was negatively influencing 
TE.  Jamnia et al. (2015) found that age had a negative 
effect on the efficiency of the offshore vessels 
operating in Chabahar region of Iran. This finding 
reflects the fact that fishing is a hard and challenging 
profession as mentioned earlier (Belwal et al., 2015). 
 
Some Policy Implications 
 
Regardless of the CRS and VRS assumptions, the 
results from this study indicate: i) the existence of 
technical inefficiency in harvesting operation, ii) the 
underutilisation of fishing capacity, iii) an increasing 
trend in scale inefficiency, and iv) the underutilisation 
of variable inputs over the study period. These results 
have important economic implications with regards to 
policy-setting for the sector as they reflect inefficient 
use of resources which hinders the achievement of 
the intended economic objectives for the sector.    
 
If the objective of economic efficiency in fisheries 
takes precedence over the objective of community 
welfare, then the management authority could use 
the existing subsidy program to enhance productivity 
(without undermining the long-term sustainability of 
the resource) by allocating such financial incentives 
to efficient fishers only. This approach would increase 
the operational costs of inefficient fishers and 
discourage them to stay in the fishery.  
 
However, if social objectives take precedence over 
economic objectives then other strategic approaches 
such as the development of human capital in the form 
of skill development initiatives should be sought (Bose 
et al., 2013). This development initiative could be tied 
with the recent initiatives of aquaculture 
development by MAF to enable fishers to choose a 
related but alternative profession. Furthermore, as 
there are considerable opportunities to increase 
productivity with current production technology 
through more efficient use of available inputs, a 
convincing case can be made to support government 
investments, infrastructure developments, and 
human capital developments through fisheries 
extension programs. The signal of excess capacity 
can be used as a tool to attract private investment in 
the sector, which is one of its strategic goals.  It 
should be noted that any effort to increase 
productivity must strike a balance with the status of 
the stock. The results of the 2007–2008 stock 
assessment survey of the Arabian Sea coast of Oman 
indicated that the contribution of marine capture 
fisheries could be enhanced through increased 
production (Shallard et al., 2010).    
 
If the existing fleet capacity and the observed outputs 
are not in harmony with the future sustainability of 
fish stocks, the government should focus on the 
development of the post-harvest sector which offers 

considerable room to improve operational efficiency 
(Al-Jabri et al., 2015; Qatan et al., 2015; Al-Busaidi et 
al., 2016; Al-Busaidi et al., 2017). Fisheries 
development strategies in Oman have adopted such 
an economic approach. To promote efficiency and 
fairness in relation to pricing and the distribution of 
fish products, a central wholesale fish market with an 
electronic auctioning system has been in operation 
since April 2014 (Bose et al., 2010; Qatan et al., 2015; 
Al-Busaidi et al., 2016). This initiative is expected to 
address some fundamental distributional and pricing 
concerns with regard to fish products in the country. 
Furthermore, the ‘trawl ban’ that occurred in the 
demersal trawl fishery in 2010 led to the decision to 
modernise fishing operations through the 
development of ‘coastal fishery’ (Al-Masroori and 
Bose, 2016), with the expectation of enhancing 
productivity of the sector. This policy decision is 
unlikely to diminish the role of SSF in Oman. 
 
Conclusion 
 
One of the prime justifications for the economic 
management of small-scale fisheries (SSF) is to 
optimise economic benefits and reduce economic 
waste of fisheries resources. With this in mind, this 
case study has been primarily concerned with 
investigating the status of technical efficiency (TE) 
and capacity utilisation (CU) of sampled fishing boats 
along with the factors affecting the level of TE and CU 
using a two-stage two-stage data envelopment 
analysis model. Such quantitative information is 
important to formulate effective policies for 
achieving economic sustainability of the SSF sector 
and safeguarding the livelihoods of small-scale 
fishers and coastal communities. In this regard, the 
present case study demonstrates how economics can 
play an important role in analysing techno-economic 
performance of the representative fishing boats and 
contributes to the development of appropriate 
policies for the conservation and efficient 
management of SSF resources.  
   
The results indicate inefficiency in harvesting 
practices, inefficient use of inputs and the presence 
of underutilised fishing capacity. However, the results 
should be interpreted within their scope as they relate 
to a specific case study and data sets and, therefore, 
should not be treated as an indicator of efficiency (or 
lack of it) for the fisheries sector of Oman as a whole. 
Despite these caveats, the empirical results of this 
study have important policy implications. They 
provide a strong rationale for a further in-depth study 
on the efficiency issue for the overall fisheries sector 
in Oman. Future work must scrutinise the sensitivity 
of empirical results by adopting a parametric 
approach. 
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